
The source for all things FrameMaker Volume 1 · Issue 1

Welcome to InFrame
Welcome to the premiere issue of InFrame, the independent electronic
magazine devoted to Adobe FrameMaker.

It is our hope to provide the FrameMaker community with a regular
source of tips, information, and idea exchange.

Click here to read a few words from the people who brought you
InFrame Magazine.

Features | Tips | Reviews | Case Studies | Adobe Speaks

Brought to you by Dennis Hays, Paul K. Schulte, and Larry Polk.

Adobe FrameMaker, FrameMaker, Adobe, and the Adobe logo copyright ©
Adobe Systems Inc. All articles copyright © by their respective authors. InFrame
and the InFrame logo, copyright © 1999 by InFrame Magazine.

Welcome to InFrame - The FrameMaker Online Magazine!

http://www.inframe-mag.com/ [12/14/1999 9:12:09 PM]

The source for all things FrameMaker

A Personal Invitation from
the Creators of InFrame
I have been a devoted user of FrameMaker since 1991 when I started a
contract job for an aircraft maintenance and modification facility in
Orlando. Florida. My first tasks were to scan pages from the
McDonnell Douglas DC-10 maintenance manual and, after putting
them through an OCR engine, save them as ASCII files. This, I would
do each morning at 6:00am. By 8:30, there were three or four of us
opening these files in FrameMaker on Macintosh computers and then
spend then rest of the working day tagging the ASCII text.
Click--Tag--Click--Tag--Click--Tag--Click--Tag. 100 pages a day
tagging text and entering small changes for the aircraft we were
modifying. I begged to do something different and my supervisor
finally allowed me to modify the Frame templates into the revised
ATA-100 specifications. I was hooked.

Since then, I've used FrameMaker on most every platform, designed
templates for some of the largest organizations, and taught hundreds
(or maybe thousands) how to use this application. And, for years now,
I've diligently lurked on the FrameUsers.com list, coming out to speak
my peace and then gently disappear again. Some of you may know me
or remember the few tidbits I've offered over the years.

However, one prevailing item has crept into the discussions from time
to time--the demise of Frame of Reference, the printed, quarterly
newsletter that bound us Framers into a community. I, too, have
wished for the return of Frame of Reference. And, I wondered why
Adobe or someone else didn't start another, either by that name or
another. A few weeks ago, I realized that I could be that someone, so I
raised my "hand" in the list and said "I'll do it!"

This is a labor of love for me and for the two other volunteers putting
this online magazine together. Larry Polk, the production designer has
created a fantastic logo and designed the site; Paul K. Schulte, the
production manager, has canvassed all of you requesting articles,
tidbits of information, tutorials, and anything else worthy of inclusion
into InFrame. The three of us receive no monies or any other
compensation--we're just a team coordinating this effort to attempt to
bring you a web-based periodical full of information you can use,
whether you're just starting with FrameMaker or you are a Adobe
Certified Expert (ACE).

InFrame - A Personal Invitation from the Creators of InFrame

http://www.inframe-mag.com/pages/welcome.html (1 of 4) [12/14/1999 9:16:37 PM]

http://www.inframe-mag.com/index.html

The success of InFrame is dependent on two things, both based on
your support. The first is that you read and use InFrame and the
second is your contributions of material. If we don't have your
contributions, we will not succeed and therefore you will be saying
that there is no need for this type of communique. On the other hand,
you can share your skills with every FrameMaker user in the world by
letting us publish your findings, tricks, plug-in reviews, and anything
else you feel is pertinent.

Dennis Hays, Publisher
(dhays@inframe-mag.com)
September 1999

And this whole adventure started out as a way to learn more and
differently from the same old routine my department had been in for
the first part of this decade. I started the Upper Midwest FrameMaker
User Network (UM-FUN) in 1997 and still lead the UM-FUN into
interesting areas of exploration.

I also wondered why Frame of Reference, or some such publication,
hadn't re-appeared. Well, spurred on by the need for a replacement
publication as we end this millennium, I helped start this ball a-rolling.
And how far it rolls, we all shall see.

(I do seem to take on the projects that lead to more work in my quest
for knowledge.)

I'd like to second Dennis' plea for your contributions. Whether we can
succeed at making InFrame the success that the FrameMaker
community yearns for, depends on these self-same contributions.

These contributions can run the gamut from a simple little technique
that helps you do your work better or more easily all the way up to
complex EDD's for FrameMaker+SGML. There is always someone
out there who can benefit from sharing from your experiences. And
even from your trials and tribulations!

This need for contributions is the same whether we're talking
presenting at the upcoming FrameUsers Conference or to a local FUN,

InFrame - A Personal Invitation from the Creators of InFrame

http://www.inframe-mag.com/pages/welcome.html (2 of 4) [12/14/1999 9:16:37 PM]

mailto:dhays@inframe-mag.com

or writing something that hopefully many of your colleagues will see.
But taking the plunge can be very rewarding! You can feel satisfied
that you've helped other users advance their training. And you can spur
other more reticent users to contribute from their knowledge base.

So I expect all of you to keep me very busy this fall with many
contributions to peruse.

Paul K. Schulte, Production Manager
(pkschulte@inframe-mag.com)
September 1999

I've been using FrameMaker for about 4 years now, and I learned the
ins and outs of the program in a "trial-by-fire" fashion. I went to work
for a software company that creates and markets engineering software.
On my first day, the president of the company sat me down at a PC and
basically said "...we use a product called FrameMaker to produce our
documentation. It's very powerful. I don't know how to use it, nor does
anyone else in the office. It's your job to rectify that situation." And so
it began. At first I hated using it...it was quirky and nothing at all like
my beloved Microsoft Word. But as we all know, adversity is the best
teacher, and I rapidly developed a respect for the product. Later, after
using Frame for a year or so, I began to actually appreciate it. Since
that time, I've been hooked.

While I don't possess the breadth of experience with FrameMaker that
my two colleagues have, I do match their dedication to the product.
We've agreed that there is a great need for an informational outlet with
respect to FrameMaker and this is what we are trying to give. I look
back on my first experiences with Frame (I didn't even know there
were any informational lists such as FrameUsers or Free Framers) and
I can't help but think that my trials in learning this powerful and
complex software would have been lessened, had there been a ready
source of information exchange such as InFrame. I'm doing this
because I believe in the product and I am devoted to promoting its
usage and appreciation.

Larry Polk, Production Designer
(lpolk@inframe-mag.com)
September 1999

InFrame - A Personal Invitation from the Creators of InFrame

http://www.inframe-mag.com/pages/welcome.html (3 of 4) [12/14/1999 9:16:37 PM]

mailto:pkschulte@inframe-mag.com
mailto:lpolk@inframe-mag.com

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame - A Personal Invitation from the Creators of InFrame

http://www.inframe-mag.com/pages/welcome.html (4 of 4) [12/14/1999 9:16:37 PM]

Autonumbering in FrameMaker

by Dan Emory

Cross-Platform Shortcuts in
FrameMaker 5.5

by Dave Valiulis

Conditional Text Overview

by Kay Ethier

FrameScript: An Introduction to Writing Scripts - Part I

by Rick Quatro

Creating multiple autogenerating TOC's in bookfiles

by Tina Poole

FM+SGML Information Design

by Dan Emory

Writing FrameMaker for Dummies

by Sarah O'Keefe

InFrame Magazine - Features

http://www.inframe-mag.com/pages/features.html (1 of 2) [12/14/1999 9:16:57 PM]

http://www.inframe-mag.com/index.html

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Features

http://www.inframe-mag.com/pages/features.html (2 of 2) [12/14/1999 9:16:57 PM]

Coming Soon: FrameMaker Tips and Tricks!

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Tips

http://www.inframe-mag.com/pages/tips.html [12/14/1999 9:17:16 PM]

http://www.inframe-mag.com/index.html

Product Review: Visual
Capture 1.0
Advanced Firmware Development
by Dennis Hays

Most of us using Adobe FrameMaker® have the opportunity, from time to
time, to capture images from our monitor screen. And, if you've been a list
member of either of the two FrameMaker® lists, or one of the other writing
lists, you know that there has been considerable talk on which screen capture
tool seems to work best.

For the most part, all of the tools work just about the same (with minor
exceptions)--load the tool and load the program and/or files to capture, then
capture the screens (I'm using the generic terminology "screens" here instead of
"windows". Most all of these programs allow you to capture individual
windows, parts of a monitor screen or any region, so in this review the word
"screen" can mean any captured portion of what displays on a computer
monitor.)

After a while, you've probably captured the screens you're going to document
and placed these files in a folder. Some of the files, because of the nature of our
business, need to be converted to other files types in an image editing program
for use in web sites, black & white output, or color printing.

When done with the laborious process or converting image types, load
FrameMaker® and, one-by-one, load the images into your application--usually
by creating an anchored frame and then placing the image inside the frame and,
horrors, re-size the image on the fly. I say horrors, because, as soon as you
re-size an image, it usually doesn't conform to a multiple of the monitor dpi (96
dpi for Wintel monitors) any longer and you lose crispness.

InFrame Magazine - Reviews

http://www.inframe-mag.com/pages/reviews.html (1 of 5) [12/14/1999 9:18:31 PM]

http://www.inframe-mag.com/index.html

Visual Capture - Main Window

I've found a tool that goes a long way to automating this process. Visual
Capture 1.0, by Advanced Firmware Development
(http://www.advfirmware.com) is a FrameMaker users "must-have" tool.
Visual Capture allows you to capture screens and save them as multiple file
types in the same session. So, with a single hot-key, you can create a color
JPEG for the web, a grayscale bitmap for laser printing, and a color TIF file for
color offset printing. One command and you've eliminated hours of work.

Quote from Advanced Firmware's web site: "Unfortunately, screen shots
usually have to be 'cleaned up' with a graphics image editor like Photoshop®.
Visual Capture takes care of graphics quality issues with features like
optimization for 256 colors, automatic removal of moiré ("checkerboard")
patterns, and assistance for correcting DPI resolution problems."

Visual Capture also:
Reconfigures the WindowsTM display system to remove moiré
("checkerboard") patterns in the Windows standard controls (such as in
scroll bars and buttons--Visual Capture obviously cannot remove
application-specific patterns).

●

Assists you with calculating the proper DPI (dots per inch) based on an
"even-multiple" of the display system's resolution

●

Optimizes resampling for Indexed-8, 256 color results even if your
display system is configured for true/high color settings (why set your
high-resolution color display settings to accommodate low-resolution
screen shots?)

●

If the above were the only differences between Visual Capture and the rest of
the field, it would still be worth the price of admission (suggested selling price
is US$99.95). However, if you're a FrameMaker® user (also PageMaker®,
QuarkXPressTM, or InDesign®), Visual Capture includes a plug-in that further
automates the process. Visual Capture's plug-in automatically creates a new
menu item (called GPS) on the FrameMaker® menu bar, allowing you to
invoke the AutoPlaceTM functions from within FrameMaker®.

Visual Capture's AutoPlaceTM feature allows you save the link to a screen shot
file into a workflow database. With a single menu command, you can place a
screen shot, positioned and scaled as either an anchored or as an unanchored
graphic, within the FrameMaker document.

InFrame Magazine - Reviews

http://www.inframe-mag.com/pages/reviews.html (2 of 5) [12/14/1999 9:18:31 PM]

AutoPlaceTM lets you select the next screen shot to be inserted●

Insert the image as an anchored graphic (below current line, inline with
text flow) or unanchored (located anywhere on the page)

●

For anchored graphic placement, the caption can be automatically
inserted

●

You control alignment and placement (depends on your DTP
application's capabilities)

●

Visual Capture keeps track of your last AutoPlace settings. So, the next
time you select the Visual Capture > AutoPlaceTM menu command, just
click the Place button.

●

This is one of the first tools that has automated what has been a drudge
procedure--capturing images from a computer monitor. I don't know why
someone hasn't done something like this before, but, after looking and working
with Visual Capture, that point is moot. It makes sense to be able to grab
images from a monitor, in various flavors, with one command--especially since
most of us are creating documentation for print, web, and on-line.

And, with FrameMaker's multiple task-oriented image placement--create an

InFrame Magazine - Reviews

http://www.inframe-mag.com/pages/reviews.html (3 of 5) [12/14/1999 9:18:31 PM]

anchored frame then import the image, it also makes sense to have a API
(application program interface) that plugs into FrameMaker® to further
automate the process.

Item Minimum Recommended

Operating System Windows 98 (2nd Edition) Windows NT (SP5)

Browser Internet Explorer 4.01 Internet Explorer 5.00 (or later)

PDF Viewer Acrobat 3.01 Acrobat 4.00 (or later)

CPU Intel Pentium Intel Pentium II

RAM 32 MB 64MB

CD-ROM drive
(Install only)

2X 16X

Display Adapter 800x600 (256 colors) 1280x1024 (16-bit color)

Pointing Device Mouse Mouse or Tablet

Available Disk Space 32 MB 48 MB

Client Vendor Versions

FrameMaker® Adobe 5.5.2, 5.5.3, 5.5.6

QuarkXPressTM Quark 4.03, 4.04, 4.10

PageMaker® Adobe 6.5, 6.5 Plus (6.52)

Where to buy:

Advanced Firmware Development · http://www.advfirmware.com

PCConnection · (800) 800-5555 · http://www.pcconnection.com

Publishers Toolbox · (800) 390-0461 · http://www.pubtool.com

DTP Direct · (800) 311-7084 · http://www.dtpdirect.com

Review Score:

(4.5 Frames)

InFrame Magazine - Reviews

http://www.inframe-mag.com/pages/reviews.html (4 of 5) [12/14/1999 9:18:31 PM]

http://www.advfirmware.com/
http://www.pcconnection.com/
http://www.pubtool.com/
http://www.inframe-mag.com/images/featrban.gif

Legend:

(Don't ask, just get it!)

(Add to your toolbox.)

(Worth a try.)

(Only if you really need it.)

(Not really worth the effort.)

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Reviews

http://www.inframe-mag.com/pages/reviews.html (5 of 5) [12/14/1999 9:18:31 PM]

Delphi Case Study: Motorola's FrameMaker Solution

by Nancy Mumford

Case Study: Creating Training Manuals Using
Conditional Text - Part I

by Adam Korman

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Case Studies

http://www.inframe-mag.com/pages/casestud.html [12/14/1999 9:18:50 PM]

http://www.inframe-mag.com/index.html

FrameMaker's Next Release
Framers,

Back in Feb or March I told you that I'd keep you informed regarding the
next release of FrameMaker as best I could and as soon as I could.

Wednesday Adobe presented its product roadmap during a press and
analyst meeting held at Adobe's headquarters in San Jose. We didn't give
any details other than the products and their schedule.

The next version of FrameMaker will be released in the 1st half of next
year (2000). I know that's not alot of information, but for those of you
planning your budgets for FY2000 this should help.

Also, this would be a good time for those of you who have let your
FrameMaker maintenance lapse to get current.

Regards,

Mark

B. Mark Hilton
Group Manager, FrameMaker Marketing
Professional Publishing Solutions
Adobe Systems Incorporated
mhilton@adobe.com

This information was taken in its entirety from the FrameUser's
mailing list (www.frameusers.com).

InFrame Magazine - Adobe Speaks

http://www.inframe-mag.com/pages/adobe.html (1 of 2) [12/14/1999 9:19:03 PM]

http://www.inframe-mag.com/index.html

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Adobe Speaks

http://www.inframe-mag.com/pages/adobe.html (2 of 2) [12/14/1999 9:19:03 PM]

Autonumbering in FrameMaker
by Dan Emory

This article is currently available in Adobe Acrobat PDF format. Click here to
access the article.

Information: 6 pages, 0.226 MB.

To download the free Adobe Acrobat reader from Adobe's web site, click here.

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Features - Autonumbering in FrameMaker

http://www.inframe-mag.com/pages/001-f100.html [12/14/1999 9:19:53 PM]

http://www.adobe.com/products/acrobat/readstep.html
http://www.inframe-mag.com/index.html

Cross-Platform Shortcuts in
FrameMaker 5.5
by Dave Valiulis

This article is currently available in Adobe Acrobat PDF format. Click here to
access the article.

Information: 30 pages, 0.609 MB.

To download the free Adobe Acrobat reader from Adobe's web site, click here.

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Features - Cross-Platform Shortcuts in FrameMaker 5.5

http://www.inframe-mag.com/pages/001-f200.html [12/14/1999 9:20:16 PM]

http://www.inframe-mag.com/files/001-f200.pdf
http://www.adobe.com/products/acrobat/readstep.html
http://www.inframe-mag.com/index.html

Conditional Text Overview
by Kay Ethier

FrameMaker's conditional text allows document creators to mark text, graphics,
or table parts with special conditional tags. The tagged data may then be
displayed ("show") or tucked out of sight ("hide") to provide the final versions.
It allows authors to manage multiple documents from one file or book. Mixing
"unconditional" text with the show- and hide-enabled text to combine
documents saves time by maintaining more data in less documents, and can be
utilized to jazz up electronic documents. Flexible and powerful, conditional text
easily facilitates this repurposing.

Conditions applied to text saves time by maintaining more data in less
documents. A document, or document set, may contain one or many conditions.
The Adobe documentation does not note any limit to the number of conditions.
(The maximum number in the author's experience is 50 conditions.) As with
paragraph tags, the more conditions, the more management needed to avoid
errors in "tagging." For users sharing files, it is important to give conditions
names that are logical to all. Using condensed names or abbreviations are not
recommended for shared files.

At first glance, new users tend to believe conditional text has one use:
combining of similar documents. Consider these paper-publishing examples for
"combining." Later we will examine repurposing examples and conditional
text's flexibility.

Note: The below examples can be applied to more than one document type.
One type is mention with each example.

Software documentation
Conditions adjust text and graphics for Windows, Macintosh, Unix, and
Linux versions.

●

Corporate reports
Conditions are used to show engineers the technical details and show
sales personnel revenue-related data without the technical minutiae.

●

Legal documents
Show or hide terms and conditions for each client--even each state.

●

Ditto for policies and procedures manuals.●

User guides
Multiple English versions (US/UK) maintained in one file or book.

●

Surveys
Conditional questions, subquestions, omits referrals ("skip to question
12") and saves paper by only showing appropriate questions.

●

Conditions are applied to text via the Special > Conditional Text dialog box.
This dialog conveniently stays open on the desktop. Text selections allow
application of single conditions, multiple conditions, or removal

InFrame Magazine - Features - Conditional Text Overview

http://www.inframe-mag.com/pages/001-f300.html (1 of 3) [12/14/1999 9:20:27 PM]

http://www.inframe-mag.com/index.html

("unconditional"). In addition to working through the conditional text dialog
box, keyboard shortcuts allow certain actions (capitalization counts!):

CTRL-4
Select text, then use this to activate scrolling conditions list in the lower
left corner of the document window. Scroll to select a condition and hit
return to apply it to selected text.

●

ESC h C
With your insertion point within conditional text, use this shortcut to
select the entire range of conditional text with same tag as your original
insertion point.

●

CTRL-6
Select text and type this to remove all condition tags from the selection

●

CTRL-5
With text selected, use this to remove a single condition tag from text
tagged with multiple condition tags. Type letter of tag to be removed and
hit return

●

Once the conditions are applied to text, adjusting a single document is easy.
Through the Conditional Text dialog box, hit the Show/Hide button. Select the
condition(s) to show and those to hide.

Please note that at the book level, it is not necessary to change the Show/Hide
for each file. Modify the Show/Hide properties for a single file, save it, and
keep it open. Then, go to the book window and though File > Import > Formats
import the Conditional Text Settings (the current Show/Hide Settings) through
the entire book at once.

Note: If the files contain overrides, check only Conditional Text Settings in the
Import Formats dialog box.

Once familiar with combining documents and tagging text, users may want to
move into more involved examples--single files or books--based on the concept
of repurposing. A savvy Frame user can use combining (above) and
repurposing techniques without error.

paper + HTML
Wreate the paper version with conditional components that belong in the
on-line version. These show-able Web components include navigation
buttons, hypertext and index markers, even Web-optimized graphics (72
dpi instead of 150 dpi).

●

paper + PDF
While most projects in this category may be managed with dual
templates, conditional text allows basic layout manipulation (including
master page elements) that can push one template to do the work of two.

●

paper + HTML Help
Currently being tested, this document set involves blocks of conditional
text hidden during the HTML production phase.

●

While conditional text is not difficult, its flexibility allows mistakes. A users
first foray into conditional text should be a simple document. The most
common mistakes are leaving too many spaces between words, or leaving extra
returns outside the condition. Even advanced FrameUsers need to step lightly.
With a little practice, though, the power of conditional text can expand the
potential of many types of documents.

InFrame Magazine - Features - Conditional Text Overview

http://www.inframe-mag.com/pages/001-f300.html (2 of 3) [12/14/1999 9:20:27 PM]

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Features - Conditional Text Overview

http://www.inframe-mag.com/pages/001-f300.html (3 of 3) [12/14/1999 9:20:27 PM]

FrameScript: An Introduction to
Writing Scripts - Part I
by Rick Quatro

FrameScript is a lot like FrameMaker; it has a fairly steep learning curve, but once
you learn it, you'll find it a real workhorse. The best way to start is to read the first
three chapters of the FrameScript Scriptwriter's Reference. And the Quick
Reference will give you a shortcut to learning the FrameScript syntax. This article
will introduce some foundational concepts of writing scripts that will help you get
started.

Before we start scripting, let's define a couple of terms. A FrameScript script
manipulates FrameMaker objects. By objects, we mean items such as paragraphs,
anchored frames, and pages. FrameMaker objects have properties that are
characteristics of the objects. A paragraph has a FirstIndent property and a Color
property. Many of an object's properties are the same as those accessed by the
FrameMaker interface (although the names are often different); for example a
paragraph's properties can be accessed through the Paragraph Designer.

Much of the work of scripting is finding out how to access an object and which of
its properties to change. Let's see how this works by writing a short script.

Open a new, portrait document and type "Hello world!" in the first paragraph.
Double-click the word Hello to highlight it. Choose FrameScript > Script Window
to open the Edit Script Window. Type the following lines in the Script Window:

Set vText = TextSelection;
Display vText;

In the first line, we are setting up a variable called vText. In programming, a
variable is like a placeholder for information. You use just about any name you
want for a variable as long as it is not a FrameScript command or FrameMaker
object or property name. I like to start my variables names with a lower case v to
distiguish them from reserved names, and so that I know at a glance that they are
variables. We are using the Set command and the equal sign to set the value of
vText to TextSelection. TextSelection is a FrameMaker object that
represents the current text selection in a document.

Click the Run button. The FrameScript command Display displays a message
box showing you the value of vText. The contents of the message box may not
seem very useful at this point, but it does tell use that we are displaying a
TextRange object. Let's modify the script: change the first line to

Set vText = TextSelection.Begin;

and click Run. Now we are displaying a TextLoc (Text Location) object. A
TextRange object is made up of two TextLoc objects; one marks the beginning
of the selection (Begin), the other marks the end of the selection (End). Now

InFrame Magazine - Features - FrameScript: An Introduction to Writing Scripts - Part 1

http://www.inframe-mag.com/pages/001-f400.html (1 of 4) [12/14/1999 9:20:49 PM]

http://www.inframe-mag.com/index.html

change the first line to

Set vText = TextSelection.Begin.Object;

and click Run. Now we are displaying a paragraph (Pgf) object. This is the
paragraph that contains the text location (TextLoc) object which is part of the
current text selection (TextRange) object.

This exercise illustrates another important concept: FrameMaker objects are usually
nested inside other objects. FrameScript uses "dot-notation" to move up and down
the list of objects. Once you locate the appropriate object, you can access its
properties. Change the first line to

Set vText = TextSelection.Begin.Object.Properties;

and click Run. Now you see a list of the current paragraph's properties; a list that's
probably too long to fit on your screen. Press Enter or Return key to dismiss the list.
Change the word Properties to Name and click Run. The paragraph format that
is applied to the paragraph is displayed.

Let's apply some of this FrameScript theory and write a useful script. This script
will give you a sample of all of the paragraph formats in your document. It will
insert one paragraph into your document for each of the paragraph formats in the
document's catalog. The paragraph will contain the format's name and will have the
format applied to it.

First, click New in the Script Window to clear it. Open a new, portrait document.
The first thing we need to do is get a list of the document's paragraph formats.
FrameScript has a special mechanism for accessing lists of FrameMaker objects.
Type the following lines in the Script Window:

Loop ForEach(PgfFmt) In(ActiveDoc) LoopVar(vPgfFmt)
EndLoop

This script simply loops through the list of paragraph format objects (PgfFmt) in
the document. At this point that's all it does; click Run and nothing happens. We
want the script to do something to each object in the list. Let's use dot-notation to
access each paragraph format's Name property. Add the following line to the script
before the EndLoop line:

Display vPgfFmt.Name;

and click Run. Now the script displays the name of each of the paragraph formats.
This can be a little tedious, because you have to click OK to dismiss each name.
Change Display to Write Console, and click Run. Now the names are
written all at once to the FrameMaker Console window. Maximize the Console
window to see the list.

Writing a script usually means performing several tasks and stringing them
together. We found out how to get a list of paragraph formats, but now our task is to
get this list into the document. We will need a new paragraph for each of the
paragraph formats in the document. To make a new paragraph, use the New Pgf
command:

New Pgf NewVar(vPgf) PrevObject(vPrevObject);

This command requires a PrevObject (Previous Object) object; in other words,
an object to place the new paragraph after. Our blank document only contains one
paragraph, so we can make that our PrevObject. Delete the Write Console
line, and add these lines to the script between the Loop and EndLoop lines:

Set vPrevObject =
ActiveDoc.MainFlowInDoc.LastTextFrameInFlow.LastPgf;
New Pgf NewVar(vPgf) PrevObject(vPrevObject);

and click Run. A new paragraph is added to the document for each of the paragraph
formats in the document. The paragraphs are blank, so we need to add the
paragraph format names. Add this line under the New Pgf line:

InFrame Magazine - Features - FrameScript: An Introduction to Writing Scripts - Part 1

http://www.inframe-mag.com/pages/001-f400.html (2 of 4) [12/14/1999 9:20:49 PM]

New Text Object(vPgf) vPgfFmt.Name;

The New Text command requires a location for the text; in this case, vPgf
specifies the paragraph object that you just made with the New Pgf command.
The text you are inserting is the Name property of the current vPgfFmt object.
Delete the blank paragraphs in your document and try running the script. You
should see a list of the paragraph formats in the document.

Before moving on to the next task--applying the correct paragraph format to each
line--let's examine the script so far. The first and last lines simply loop through the
document's list of paragraph formats. Whatever is inside the loop is repeated for
each paragraph format in the list. This illustrates the role that variables play in
scripting. The variable name vPgfFmt stays the same, but its value changes as the
script executes. The same is true for the variable vPrevObject; each time
through the loop it is set to the last paragraph (LastPgf) in the last text frame
(LastTextFrameInFlow) of the main flow (MainFlowInDoc) in the current
document (ActiveDoc). To help you visualize this, add the following line after
the Set vPrevObject line:

Display vPrevObject.Text;

and click Run. You will see that the PrevObject variable is always set to be the
last paragraph. Delete this line before continuing.

The third and final task is to apply each paragraph format's properties to the
paragraph that bares its name. As you can guess, this task will be performed inside
the loop. First, add the following line before the EndLoop line:

Set vPgf.Properties = vPgfFmt.Properties;

This line simply sets the properties of the new paragraph to match the paragraph
format properties. Delete all the paragraphs from your document and run the script.

Before closing the Script Window, make sure you save your script with a name you
can remember. I call mine ShowAllParaFormats.fsl. Next time, we'll
introduce a different kind of loop and some more FrameScript commands.

InFrame Magazine - Features - FrameScript: An Introduction to Writing Scripts - Part 1

http://www.inframe-mag.com/pages/001-f400.html (3 of 4) [12/14/1999 9:20:49 PM]

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Features - FrameScript: An Introduction to Writing Scripts - Part 1

http://www.inframe-mag.com/pages/001-f400.html (4 of 4) [12/14/1999 9:20:49 PM]

Creating multiple
autogenerating TOC's in
bookfiles
by Tina Poole

This method uses multiple TOC's that update automatically when the book is
regenerated. Extra paragraph tags are needed but for the little bit of extra
tagging required this is a big time saver once the document is setup

The book in this example has the following structure.

There is a master TOC

InFrame Magazine - Features - Creating multiple autogenerating TOC's in bookfiles

http://www.inframe-mag.com/pages/001-f500.html (1 of 4) [12/14/1999 9:21:04 PM]

http://www.inframe-mag.com/index.html

and each section has its own TOC.

InFrame Magazine - Features - Creating multiple autogenerating TOC's in bookfiles

http://www.inframe-mag.com/pages/001-f500.html (2 of 4) [12/14/1999 9:21:04 PM]

First the files in each section will need to have unique paragraph tags, for this
example the following is needed.

ChapterTitle
(this tag is needed for the Introduction
which is not in a section)

Section 1 Section 2 Section 3

ChapterTitle1 ChapterTitle2 ChapterTitle3

1Heading1 1Heading2 1Heading3

2Heading1 2Heading2 2Heading3

Create the book file and add the main TOC. In the Include Paragraph Tags
include all Section and ChapterTitle tags. Add another TOC but in the Set Up
Table of Contents -> Filename Suffix: add a 1 after the TOC.

In the Include Paragraph Tags include Section1, Chapter1, 1Heading1 and
2Heading1. Add the other TOCs using the same procedure, i.e. TOC2 has all
the *2 tags and TOC3 has all of the *3 tags. This will create the section TOCs.
Generate the book as usual and all of the TOCs will be created. The section
TOCs work exactly like any TOC and will update automatically when the book
is regenerated.

Thanks to the Publishing Unit, Tests & Publishing, Queensland Board of Senior
Secondary School Studies, Australia for this great time saver.

InFrame Magazine - Features - Creating multiple autogenerating TOC's in bookfiles

http://www.inframe-mag.com/pages/001-f500.html (3 of 4) [12/14/1999 9:21:04 PM]

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Features - Creating multiple autogenerating TOC's in bookfiles

http://www.inframe-mag.com/pages/001-f500.html (4 of 4) [12/14/1999 9:21:04 PM]

FM+SGML Information Design
by Dan Emory

This article is currently available in Adobe Acrobat PDF format. Click here to
access the article.

Information: 23 pages, 0.537 MB.

To download the free Adobe Acrobat reader from Adobe's web site, click here.

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Features - FM + SGML Information Design

http://www.inframe-mag.com/pages/001-f600.html [12/14/1999 9:21:10 PM]

http://www.adobe.com/products/acrobat/readstep.html
http://www.inframe-mag.com/index.html

Writing FrameMaker for
Dummies
by Sarah O'Keefe

For eighteen months, I tried to convince a passel of publishers that a
FrameMaker book was a good idea. I told them about the difficulty of learning
FrameMaker; I eloquently described the dedication of a typical FrameMaker
user; I emphasized the dearth of available books.

Apparently, this was not the right approach.

After about ten publishers, I decided that a FrameMaker book just wasn't going
to happen. So I gave up and got busy with other projects. Six months later, out
of the blue, IDG Books contacted me and asked me to write a Dummies book on
FrameMaker.

Writing a Dummies book has pros and cons. On the good side, you can write
just about as informally as you want, and bad puns are encouraged. One of the
negatives is that you only have about 400 pages to work with—including the
front matter and the index. Of course, it's impossible to cover the entire
FrameMaker set in 400 pages (unless you use microscopic type).

Some judicious pruning was required. The Equation Editor was the first to go;
it's an interesting and powerful feature, but used by very few users. Many
Dummies books include an appendix with installation instructions, but not this
one. I simply couldn't afford to give up 15—20 pages for it. I decided to focus
on the core features that make FrameMaker so powerful. After some further
investigation, I decided that this more or less corresponded to the items listed in
the Import Formats dialog box, plus graphics.

I had a lot of trouble convincing the publisher that this approach made sense.
Most of their editors have extensive experience with PageMaker and
QuarkXPress, and so their instinct was to divide the book into sections on "how
to do layout" and sections on "how to insert content." But eventually, I added
some explanatory information to the beginning of the book and got to keep the
FrameMaker-centric organization.

During the writing and editing process, I learned a couple of important lessons
that I think can be useful to every FrameMaker user and advocate out there:

Many people have never heard of FrameMaker, even in the publishing
industry. They are much more familiar with the way PageMaker and
QuarkXPress work. If you're working with someone who has desktop
publishing experience, the FrameMaker approach is not going to make
sense to them until you explain it.

●

The publishing process is a lot like a hot dog factory. Even if you like the
final result, you probably don't want to look too closely at how it's

●

InFrame Magazine - Features - Writing FrameMaker for Dummies

http://www.inframe-mag.com/pages/001-f700.html (1 of 2) [12/14/1999 9:21:27 PM]

http://www.inframe-mag.com/index.html

produced.

After my experience writing this book, I'm more surprised than ever that
computer trade book publishers don't use FrameMaker much. With the notable
exception of O'Reilly & Associates, I do not know of a major publisher that uses
FrameMaker to produce its books. And this caused me all sorts of grief. Here are
some of the indignities that I endured:

I had to produce text in—you guessed it—Microsoft Word.●

Graphics were shipped separately because they can't be embedded into the
Word files. As a result, I couldn't see the graphics without switching to
another application, which made the writing process more
time-consuming.

●

Figure and table numbers had to be typed in manually. By me.●

Cross-references to other chapters had to be created manually.●

Word's autonumbering for bullets and step lists was strictly verboten
because it would not convert properly when the book went into
production. Therefore, I had to type in bullets (asterisks) and step
numbers, along with their tabs to line them up.

●

No Word tables were allowed. All tabular information had to be set up as
tab-delimited text so that it would convert properly.

●

If you ever get a bit miffed at FrameMaker (no pun intended), try working in
Word for a few weeks. It'll take care of those traitorous impulses.

All in all, I'm pleased with how the book has turned out. But I do believe that I
could have done it better, faster, and cheaper using FrameMaker. I hope that
book publishers will take a hard look at their processes and think about the
money they could save with better tools—and I can recommend a book for them
to start with.

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Features - Writing FrameMaker for Dummies

http://www.inframe-mag.com/pages/001-f700.html (2 of 2) [12/14/1999 9:21:27 PM]

Delphi Case Study: Motorola's
FrameMaker Solution
by Nancy Mumford

40 Years of Space Heritage

Motorola's Satellite Communications Group (SATCOM) serves domestic and
international government and commercial customers with integrated space
communications systems and advanced technology applications.

From the earliest days of America's space program, even before Explorer I
reached orbit in 1958, all U.S. spacecraft have maintained their vital link to
Earth via Motorola SATCOM equipment. As the world watched Neil
Armstrong take 'one giant leap for mankind,' they were doing so via a Motorola
transceiver on the lunar module.

Problem: maintaining document accuracy with
1,000s of changing components.

Motorola's SATCOM team has hundreds of engineers, focused on designing,
developing, and delivering new communication technologies. One of the big
challenges this team faces is the management of product information as it
moves from concept to design specification to product documentation. In each
of these stages, the information is subject to review and change. Often, a
change to the information means a change in the product itself.

To better manage completed documentation, Motorola uses an application
called Compass, built with Open Text's LiveLink. This application provides
information access to the entire team but fell short in managing
"work-in-progress" documents. Motorola needed to find a solution that would
allow them to reduce the approval cycle time, improve consistency, and better
handle information reuse.

Information creation at Motorola is a very collaborative process. Each
document is made up of text, diagrams, and images, all of which may be useful
in other documents. To best optimize the creation, modification, and reuse of
this information, Motorola determined that they needed a new approach that
focused on individual components of information within each document.

The SATCOM team has to ensure the accuracy of 1,000s of highly sensitive
information components, distributed across 10,000s of pages used in what is
literally "rocket science." This problem exceeds the capabilities of traditional
document management systems, which are designed to manage many-to-one
relationships (e.g., many pages to one document). Rather it requires a system
adept at handling many-to-many relationships (e.g., many components

InFrame Magazine - Case Studies - Motorola's FrameMaker Solution

http://www.inframe-mag.com/pages/001-c100.html (1 of 3) [12/14/1999 9:22:11 PM]

http://www.inframe-mag.com/index.html

comprising many different documents).

Needed: component-level reuse with automatic
change notification

Given the impossibility of manually maintaining the accuracy of the
many-to-many relationships between components and documents, an initiative
was created to implement a "document creation system" enabling
component-level reuse with automatic change notification, which would be
integrated into the existing Compass system. A set of evaluation criteria was
compiled for the document creation system which intentionally emphasized
"creation" over "management" because of the intent to use it along with
Compass. It was felt that the Compass system did a fine job of managing
documents, yet clearly lacked the ability to create and assemble original
documents from individual components.

This latter focus on reuse was the primary guide when evaluating potential
solutions. Also considered was the authoring environment supported by the
tools. It was decided that a tool was needed that could provide the functionality
of SGML or XML, yet SATCOM's authors could not afford the steep learning
curve imposed by editing directly within these environments. For this reason,
the decision was made to standardize Adobe FrameMaker for the creation of
documentation. Based on this criteria the search began for a tool with the
following capabilities:

provide a work-in-progress repository that would facilitate component
reuse and allow parallel development of documents

●

allow parametric data (dimensions, mass, tolerances, etc.) to be stored in
an external database and accessible directly from the primary document
editor, rather than hard-coded into documents

●

eliminate uncontrolled and unmanaged reuse and manual "cut-and-paste"
of changed components into child documents

●

integrate directly with FrameMaker and provide conversion to XML●

Solution: component management using Chrystal
Software's Canterbury

After reviewing about a half dozen potential solutions that facilitated document
creation, Canterbury from Chrystal Software was selected, based both on its
sophisticated management of components and its support for FrameMaker.
Using this system, SATCOM was able to streamline the document creation
process by reusing components and facilitating collaborative authoring.

With the adoption of Canterbury, the SATCOM team is now able to route
sub-parts -- individual sections, graphics, and diagrams -- of their information
for approval based on automatic e-mail notification. In addition, they can reuse
graphics and text without the burden of preplanning.

In the future, Motorola believes that tracking relationships between components
of information will be critical. With Canterbury, they are able to determine
where text and graphics are used throughout the documentation set. In addition,
metadata (attributes) can be used to group related information.

Another efficiency came from reduced maintenance and infrastructure
requirements as document components were referenced instead of replicated.
Given the large file size of some components and the potential for their use in
100s or 1,000s of documents, the savings provided by referencing rather than
replication is substantial.

InFrame Magazine - Case Studies - Motorola's FrameMaker Solution

http://www.inframe-mag.com/pages/001-c100.html (2 of 3) [12/14/1999 9:22:11 PM]

Summary

SATCOM's document creation system illustrates the disconnect found with
traditional document management, where the focus is largely (if not
exclusively) on storage and retrieval, at the expense of the authoring process.
Here, the SATCOM team found the greatest value came from not just
managing "documents," but rather by allowing them to be decomposed into
individual components and managed at the component level.

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Case Studies - Motorola's FrameMaker Solution

http://www.inframe-mag.com/pages/001-c100.html (3 of 3) [12/14/1999 9:22:11 PM]

Case Study: Creating Training
Manuals Using Conditional
Text - Part I
by Adam Korman

Introduction

The FrameMaker User Guide discusses two common uses for conditional text:

Managing multiple versions of a book with minor differences (for
example, a manual that describes software that runs on more than one
platform)

●

Inserting editorial comments into documents●

This article describes how to use conditional text to achieve a more complex
goal: to manage multiple versions of interrelated documents (in this case a set of
training materials). The unique problem in this case (which served as the basis
for this article) was that we wanted to include cross-references from one version
of a book to multiple versions of the same book, but only maintain one set of
files.

The article will cover a number of topics, including:

How to organize the file structure for the documents●

How to create and manage multiple versions of interrelated documents●

How to create cross-references among multiple versions of the book while
maintaining only one set of files

●

Strategies and tips for addressing formatting issues●

Managing multiple versions and overcoming formatting issues by
importing templates

●

Although many of the issues covered are unique to this scenario of interrelated
versions of a conditional document, others apply to any kind of document. So,
while some of the information presented here describes how certain obstacles
were overcome in this particular case, much of the article focuses on the specific
steps to take, and the various options available, when creating similar
documents.

Prerequisite Knowledge

The basics of working with files in your operating system (deleting, copying and
renaming files) are not covered in this article. Additionally, this article assumes
that you are already comfortable with a number of FrameMaker's features,
including:

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (1 of 11) [12/14/1999 9:22:30 PM]

http://www.inframe-mag.com/index.html

Working with text and other basic word processing features●

Creating and managing multi-file books●

Creating and managing generated lists (table of contents, index, etc.)●

Importing formats into documents and across a book●

Inserting and managing cross-references (including updating unresolved
cross-references)

●

Using and modifying paragraph tags●

Importing files into documents●

This article will not cover the basics of using conditional text (creating
conditions, applying conditions to text, showing/hiding conditions, etc.). Instead,
it will describe how to use conditional text to create documents similar to those
in this case. If you are not familiar with conditional text, you may want review
the conditional text chapter in the FrameMaker User Guide.

Case Background

The client needed a training course for an audience which fell into two broad
categories: entry-level staff and mid-level staff. Although most of the material
applied to both audiences, we decided that it would be more effective to tailor
the lectures and exercises to specifically address the experience level of each
audience.

Basic Requirements

Create two, similar versions of a training course ("version A" and "version
B"); roughly 85% of the material would be exactly the same in both
versions.

●

Create a workbook ("WB") and leader's guide ("LG") for each version.●

Problems and Considerations

The most straightforward path to meet these requirements would be to create
and maintain four books (a leader's guide and a workbook for each audience).
This would have been problematic for a number of reasons.

Maintaining the consistency of the material common to both versions.
In writing the material (and later in editing and updating the books),
maintaining more than one set of files would require duplicate effort.

1.

Printing and other costs.
In this case, each trainer was responsible for teaching both versions of the
course. This could mean providing up to four books for each trainer (both
versions of the leader's guide and workbook). Additionally, the labor costs
(in dollars and time) associated with writing and editing four books were
an important consideration.

2.

Convenience.
It would be a hassle for each trainer to have to keep track of four books.
Additionally, to keep a separate workbook at hand for reference while
teaching would be physically unwieldy. More importantly, since the two
versions would be so similar, for the trainer to make notations or
comments in the leader's guide would have often required copying those
notes into the second version.

3.

Potential confusion.
Since the two versions of the course were only subtly different in many
instances, the trainers might not readily recognize these differences.
Trainers could easily go into "autopilot" while teaching, and accidentally
present the wrong version.

4.

The Solution

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (2 of 11) [12/14/1999 9:22:30 PM]

The solution, which addressed each of these issues, was to create a single set of
files from which all of the training materials were generated by using
conditional text. This made it possible to provide the trainer with one book,
rather than four, and still provide separate versions of the workbook to the two
different audiences. Since so much of the material was exactly the same in both
versions, it was actually preferable for the trainer to have a single book that
clearly denoted the differences between the two versions.

Since all the materials came from a single set of files, the workbook text
was included in the leader's guide, obviating the need for the trainer to
refer to a separate workbook while teaching the course.

●

Instead of a "snapshot" of each workbook page in the leader's guide, we
decided to intersperse guideline lecture scripts, comments and exercise
instructions for the trainer in the appropriate context of the workbook text.

●

Because the trainers periodically needed to refer participants to the correct
spot in the workbook, and since leader's guide page numbering was
different from the workbooks', we decided to include cross-references to
the workbook pages throughout the leader's guide (a reference for every
1-2 pages of workbook text).

●

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (3 of 11) [12/14/1999 9:22:31 PM]

New Problems

Unfortunately, the "solution" introduced a whole new set of problems. Please be
aware that while this article describes how to address these problems, the
underlying issue (which does not go away) is that the whole procedure is
complex. If you are not the only person involved, everyone who has to work
with these documents should have a clear understanding of how to properly deal
with the files and the potential pitfalls.

Initially, the most confounding aspect of the project was to find a way to
maintain one set of files, yet include cross-references which would
normally require three separate sets of files. The solution was to keep two
sets of "dummy" files (one for each workbook) to serve as the source for
cross-references, but which would not be edited in any way.

Warning! Do not make any changes in the "dummy" files. All of your
work will be lost.

1.

Under normal circumstances, FrameMaker handles cross-references with
simplicity and skill. In this case, you will become frustrated. Once
cross-references are properly in place, they are completely stable and
dependable, but reaching that point requires some extra effort.

Warning! Make certain that everyone working on these files (including
yourself!) fully understands the correct ways to insert cross-references. If
not entered properly, cross-references will break in new and unpleasant
ways.

2.

Depending on your document layout, formatting conventions and
templates, setting up conditional-text documents so that they do not
require adjustment once you change the Show/Hide settings can be
painstaking, difficult and/or frustrating.

Warning! The hard work is worth the effort, and you should avoid taking
the approach of making manual adjustments to the workbooks after you
create (or update) them. If you have to make changes to the "dummy"
files, your work will eventually be lost, and you will have defeated the

3.

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (4 of 11) [12/14/1999 9:22:31 PM]

purpose of using conditional text.

Although one set of files is easier to maintain than four, many of the
routine operations you take for granted with regular books will take more
time.

Warning! Allow extra time in your schedule. I highly recommend that
well before your deadline you perform a trial run with a representative
portion of all the books (at least two chapters) that includes proof-reading,
editing, checking all cross-references, checking the table of contents and
index, etc.

4.

Getting Started

Most of the preparations and decisions required were the same for this project as
for any other conditional text document. One of the primary concerns was
deciding what conditions to use and how they would appear in the printed
documents.

Setting up Conditions

In this case we required three conditions:

LG for all instructions to the trainer●

WB A for text that only applied to version A of the course●

WB B for text that only applied to version B of the course●

Any text common to both versions of the workbook was left unconditional
(since it appeared in all three books).

Using Color

Although our budget did not allow for color printing, setting the conditions to
display different colors made the process of writing and editing simpler. Before
going to print we changed all conditions to appear black. But, even if your
budget does allow for color printing, keep in mind the admonition that appears
in the FrameMaker User Guide chapter on conditional text: if you use color to
distinguish different versions of a document, you should also use some other
visual cue, since many people have difficulty distinguishing colors (or are color
blind altogether).

Additional Formatting

In this case, the trainers needed to quickly distinguish several kinds of
information in the leader's guide:

Instructions for the trainer (which did not appear in the workbooks) that
applied to both audiences

●

Instructions to the trainer that only applied to version A of the course●

Instructions to the trainer that only applied to version B of the course●

Text that appeared in both versions of the workbook●

Text that only appeared in version A of the workbook●

Text that only appeared in version B of the workbook●

To convey all this information we adopted the following conventions:

Since the workbook text common to both versions served as the
"skeleton" of the training course, this text (and headers and footers)
appeared in normal, black text.

●

All LG text appeared in a font visually distinct from the one used for WB
text. (If color printing had been an option, we would have also used a
different color for all LG text.)

●

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (5 of 11) [12/14/1999 9:22:31 PM]

WB text and related LG instructions that only applied to one version of
the course were set off using special tables with headings that read either
VERSION A ONLY or VERSION B ONLY. (Again, if color printing had
been an option, we would have also used different colors for text specific
to each version of the workbook.)

●

How to achieve this formatting will be discussed in depth in the next issue of
InFrame, in the section titled Formatting and Importing Templates.

Writing and Editing

The most important thing to remember in this whole process is that all of the
writing, editing and formatting was done in the leader's guide files. As you will
see, any work performed directly in the workbook files would be lost.

File Structure

Because of the unique cross-reference problems in this case, you need to
carefully plan how you will name and organize your files.

Naming Files

Although just about any naming convention you choose should work, using a
simple identifier for each version of the book will make managing the files
simpler. In this case, we chose to attach a prefix to each file name: "LG" for the
leader's guide, "WBa" for version A of the workbook and "WBb" for version B
of the workbook. So, files were named as follows:

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (6 of 11) [12/14/1999 9:22:31 PM]

File Leader's Guide Workbook A Workbook B

Book file LG.book WBa.book WBb.book

Contents LGTOC.fm WBaTOC.fm WBbTOC.fm

Chapter 1 LG Intro.fm WBa Intro.fm WBb Intro.fm

Chapter 2 LG About ABC.fm WBa About ABC.fm WBb About ABC.fm

Index LGIX.fm WBaIX.fm WBbIX.fm

Organizing Files

There are basically two approaches to file organization, and the one you choose
is a matter of preference.

Option 1: Use Separate Folders

This method is preferable because it clearly separates the files you work in (the
leader's guide files) from the files you should not edit (the workbook files)

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (7 of 11) [12/14/1999 9:22:31 PM]

If you use this option, you could theoretically save yourself a lot of work by not
renaming the files for either version of the workbook (just use different folder
names). While this will work, it can be incredibly confusing.

What you name the folders is not important. How you organize the
hierarchy of the files is critical.

●

In this example, Leader's Guide, Workbook A, and Workbook B should
all be at the same hierarchical level in the file structure.

●

If you use graphics imported by reference, Graphics can be anywhere in
the file system except nested within Leader's Guide, Workbook A, or
Workbook B.

●

If you nest Graphics or the workbook folders within Leader's Guide, any
graphics imported by reference in the workbooks will be lost unless you keep an
exact copy of the folder and its contents in each workbook folder (this is
definitely not a good idea).

Option 2: Use a Single Folder

You may prefer to keep all of your files in a single folder. In this case, beginning
each file name with LG, WBa, or WBb allows you to keep the three books
visually distinct if you arrange your file view alphabetically.

If you use graphics imported by reference, this option has fewer restrictions.
Since the files are all in the same folder, the relative path to Graphics stays the
same no matter where it is. Graphics can go anywhere in your file system that
you normally use for imported graphics.

Creating and Updating the Workbook

Introduction

Remember, you should not work directly in the workbook files. You will lose
any work you perform in these files. All of your writing, editing and formatting
should be done in the leader's guide files. You create the workbook files by
renaming a copy of the leader's guide files and adjusting the conditional text
settings for those files. There are two approaches to take:

Create the workbook one document at a time●

Perform a batch conversion of the entire leader's guide into a workbook●

One Document at a Time

When you create a new chapter, or want to update just one chapter in the

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (8 of 11) [12/14/1999 9:22:31 PM]

workbook, it may be more expedient to create the workbook file individually
rather than updating the entire book at once.

Create the WB File
Open the LG file.1.

Select File > Save As...2.

Navigate to the Workbook A (or Workbook B) folder.3.

Change the file name to match your naming convention.4.

Choose Save.5.

If asked if you want to replace or write over an existing file with the same
name, select OK.

6.

Change Conditional Text Settings

Select Special > Conditional Text...1.

Choose Show/Hide...2.

Add the LG and WB B conditions to the Hide list; leave the WB A
condition in the Show list. (When creating Workbook B, the LG and WB
A conditions should appear in the Hide list, and the WB B condition
should appear in the Show list.)

3.

Choose Set.4.

Update Cross-References
Select Edit > Update References...1.

Mark the All Cross-References checkbox.2.

Choose Update.3.

Select File > Save.4.

Create the WB B File
To create the WB B file directly from the WB A document, repeat the
process beginning with step 2.

1.

Update Cross-References in the LG
Open the LG file. If you have automatic updating of cross-references
turned on, skip the next three steps.

1.

Select Edit > Update References...2.

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (9 of 11) [12/14/1999 9:22:31 PM]

Mark the All Cross-References checkbox.3.

Choose Update.4.

Select File > Save.5.

Batch Conversion

Although you may become quite skilled at going through the whole process of
creating one workbook file at a time, it is quicker to update the whole book at
once. This is the process you will need to go through every time you want to
create up-to-date versions of the workbooks and update cross-references in the
leader's guide.

Before you begin, you will need to create templates that have the Show/Hide
properties set appropriately for each version of the workbook. Details about how
to set up these templates, and additional suggestions for making the most of
templates are covered in Importing Templates.

Copy and Rename the Documents

Delete any existing WB A documents (do not delete the book file).1.

Copy the LG documents (except the book file) into the Workbook A
folder.

2.

In the file system, rename the files to match your WB A naming
convention.

3.

Import Formats Across the Book

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (10 of 11) [12/14/1999 9:22:31 PM]

Open the WB A template.1.

Open the WB A book file.2.

If there are new files that have not yet been added to the book, add those files
and make any changes necessary in File > Set Up File... now.

Select File > Import > Formats...1.

Set Import From Document to the WB A template.2.

Make your choices for what to Import and Update across the book
(Conditional Text Settings must be checked).

3.

Move all the files to the Update list.4.

Choose Import.5.

Generate/Update the Book

Select File > Generate/Update.1.

Make any adjustments necessary to the Generate list.2.

Choose Update.3.

Select File > Save.4.

Workbook B

Repeat the batch conversion steps for version B of the workbook.1.

Generate/Update the Leader's Guide

Always finish by generating the LG book in order to ensure that all
cross-references are updated and resolved.

Open the LG book.1.

Select File > Generate/Update.2.

Make any adjustments necessary to the Generate list.3.

Choose Update.4.

Select File > Save.5.

Continued in the next issue of InFrame.

Features | Tips | Reviews | Case Studies | Adobe Speaks

InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)

http://www.inframe-mag.com/pages/001-c200.html (11 of 11) [12/14/1999 9:22:31 PM]

COPYRIGHT © 1999, DAN EMORY UNCLASSIFIED 1

Autonumbering in FrameMaker

Author: Dan Emory

Publication Date: 8/11/99

1 How Autonumbers are Defined

FrameMaker’s autonumbering capability is quite versatile, allowing it to be used for many purposes. But
versatility has a price—complexity. You must understand how autonumber formats are defined, and
what their components are.

Autonumbers are defined as
part of a paragraph format

The Numbering Properties panel of the Paragraph Designer is where you
define an autonumber format.

Components of an Autonumber
Format

An autonumber format can have any or all of the following components:

Series Label A series label, if it is used, must be entered as the first component in the
autonumber format text box of the Numbering Properties panel in the
Paragraph Designer. The purpose of the series label is to differentiate dif-
ferent types of autonumber series within the same text flow. A series label
consists of a single letter, followed by a colon. Here’s an example of a se-
ries label:

H:

The series label does not appear in the displayed autonumber.

Note: Series labels are not required for unordered lists (e.g., bulleted lists),
because sequential numbering is not involved

Any paragraph’s autonumber within the same series is based on the previ-
ous numbered paragraph within that series. However, the same series can
be used over and over again (e.g., numbered lists) within the same text
flow, provided the first paragraph in each usage re-initializes the series
numbering.

Counter Chain A counter chain consists of one or more counters, where each counter pro-
duces either nothing or a single number or letter in the number series.

Counter A counter is a placeholder that FrameMaker replaces with a single number
or letter in a sequence. It is represented by opening and closing angle
brackets (< >). A counter consists of one of the following building blocks:

<n=1> - Set the counter to a value of 1.
<n+> - Increment the counter by 1.
< =0> - Reset the counter to a value of 0, but do not display the value
of 0 in the number of the paragraph.
<n> - Display the number of the most recent preceding paragraph in
which the counter was incremented, set to 1, or set to 0.
< > - Ignore the value in this counter (i.e., do not include it in the
number of the paragraph).

HOW AUTONUMBERS ARE DEFINED AUTONUMBERING IN FRAMEMAKER

2 COPYRIGHT © 1999, DAN EMORY

The letter that appears within the counter specifies the type of numbering,
as follows:

• n = arabic numbering

• a = lowercase letters (a to z)

• A = uppercase letters (A to Z)

• r = lowercase roman numerals

• R = uppercase roman numerals.

Text, tabs, spaces,
and punctuation

An autonumber can also include text, spaces, punctuation, or tabs any-
where in the autonumber format. Note that an autonumber format does
not have to include a counter chain or a series label. That is, it can consist
solely of text, tabs, spaces, and punctuation.

Note: When you use hyphens in autonumber formats it is advisable to
specify a nonbreaking hyphen (dialog box code \+). This will prevent the
number from being split at the hyphen in cross-references.

Character Format The Numbering Properties panel of the Paragraph Designer allows you to
specify any character format in the character catalog for formatting the au-
tonumber (default value is Default ¶ Font).

Position The Numbering Properties panel of the Paragraph Designer allows you to
specify that the autonumber appear at either the beginning or end of the
paragraph (default is Start of Paragraph).

By the way…

When you specify paranumonly in a running header/footer variable,
a cross-reference format, or a list specification flow, text, tabs, spaces,
and punctuation appearing before or after the counter chain in the au-
tonumber format do not appear in the header/footer, cross-reference, or
generated list.
For example if you specify paranumonly in a cross-reference, here’s
what you’ll get for the autonumber formats shown below:

Note: The dialog box code “\+” in the formats shown below
specifies a nonbreaking hyphen..

.

FORMAT THE CROSS-REFERENCE WILL CONTAIN:
Figure <n>\+<n+>: 1-1 (the word Figure followed by a space at

the beginning, and the colon and space at the
end are excluded)

<n>\+< ><n+>: < > 1-1: (the empty counters are excluded, but
the colon and space following the third
counter are included because they are within
the counter chain)

<n>\+< ><n+>< >: 1-1 (the empty counters are excluded. Also,
the colon and space at the end are excluded,
because they are outside the counter chain)

AUTONUMBERING IN FRAMEMAKER AUTONUMBERING IN BOOKS

COPYRIGHT © 1999, DAN EMORY 3

2 Autonumbering in Books

An autonumber format that has a Series Label can span all files of a book.
In other words, a series that begins in one file of a book can continue
through succeeding files of the same book. For example, an autonumber
series that specifies (among other things) the chapter number will number
the chapters consecutively throughout the book. To get this behavior, pro-
ceed as follows:

Step 1. Open the book file.

Step 2. Select a file in the book where autonumbering is to be continued.

Step 3. Choose File > Set Up File. In the Set Up File dialog:

a. Set Paragraph Numbering to “Continue”.

b. If page numbering restarts at 1 within each chapter:

1. If the file is the first file in a chapter, set Page Numbering to “Re-
start at 1”, OR

2. If the file continues a chapter that began in a preceding file, set
Page Numbering to “Continue”.

c. If page numbers are to be prefixed with the chapter number followed
by a hyphen in generated lists and indexes. enter “n- ” in the Prefix
text box, where n = the number of the chapter.

Step 4. Repeat steps 2 and 3 for each file in the book.
With the setup made in step 2a, all paragraph number restart actions (e.g.,
restarting level 1 head numbering at 1 within each numbered chapter) are
accomplished by resetting counters (i.e., < =0) in the counter chain.

3 Advantages of Using FrameMaker+SGML

FrameMaker+SGML can be used to create structured, as well as unstructured documents. In structured
documents, an Element Definition Document (EDD) defines both the document’s structure and its for-
matting. The formatting information in the EDD can include all of the autonumber formats. This docu-
ment was created as a structured document in which the EDD specifies all autonumbering formats.

The advantages of defining autonumber formats in the EDD include:

• Autonumbering is not tied to particular paragraph tags in the para-
graph catalog. Instead, autonumber formats are tied to structural
elements. The format rules for any such element can specify any
required paragraph tag to be used for that element in each con-
text. Other format rules for the same element can specify (usually
via format change lists) the autonumbering format, if any, to be
applied to the specified paragraph tag in each element context.

• In addition to structural context, format rules can specify the au-
tonumbering format of an element based on attribute values in the
same element, or in an antecedent element. Consequently, the
autonumbering format applied to each element can be deter-
mined by a combination of structural context and attribute values.

What this all means is that any tag in the paragraph catalog can have ap-
plied to it any EDD-format-rule-specified autonumber format.

SOME EXAMPLES AUTONUMBERING IN FRAMEMAKER

4 COPYRIGHT © 1999, DAN EMORY

4 Some Examples

4.1 Autonumbering of chapters, headings, figures, tables, and equations

A single autonumbering series (series label H) can be used for this purpose,
which prefixes headings, figures, tables and equations with the chapter
number. Table 1 below shows the counter chain for each paragraph tag.

a. H: is the Series label.
b. Note that the words Chapter, Figure, Table, and Eqn (and their following space character) are outside the counter chain, thus

they are excluded when paranumonly is used in header/footer variables, cross references, and list specification flows.
c. The dialog box code “\+” produces a nonbreaking hyphen.

Table 1. Autonumbering format for the H series

Para Tag
Counter

Comments
Chapter abc Head

1
Head

2
Head

3
Figure

No.
Table
No.

Egn
No.

ChapTitle H:CHAPTER <n+> < =0> < =0> < =0> < =0> < =0> < =0> Increments Chapter counter, and re-
sets all other counters to 0

Heading1 H:<n>\+ <n+> < =0> < =0> < > < > < > Increments Head1 counter and resets
Head2 and Head3 counters to 0

Heading2 H:<n>\+ <n>. <n+> < =0> < > < > < > Increments Head2 counter and resets
Head3 counter to 0

Heading3 H:<n>\+ <n>. <n>. <n+> < > < > < > Increments Head3 counter

FigCaption H:Figure <n>\+ < > < > < > <n+> < > < >.

Increments Figure No. counter. Note
that the period that follows the figure
number appears after the empty Eqn
No. counter, so that it will be exclud-
ed when paranumonly is used in
header/footer variables, cross refer-
ences, and list specification flows.

TblCaption H:Table <n>\+ < > < > < > < > <n+> < >.

Increments Table No. counter Note
that the period that follows the figure
number appears after the empty Eqn
No. counter, so that it will be exclud-
ed when paranumonly is used in
header/footer variables, cross refer-
ences, and list specification flows.

EqnCaption H:Eqn <n>\+ < > < > < > < > < > <n+>. Increments Eqn No. counter

ChapNum H:Chapter <n>\+ < > < > < > < > < > < >

If chapters span two or more files, this
tag is inserted in each file and used to
create the chapter number prefix in
the current page number variable
(paranumonly is used in the vari-
able definition to exclude the Chapter
prefix).

It can also be used in cross-references
(in this case, paranum is used in the
cross-reference format so as to in-
clude the Chapter prefix).

The format for paragraph tag Chap-
Num specifies a default font of 2 pts,
with color matching the background
color, so it will be invisible.

AUTONUMBERING IN FRAMEMAKER SOME EXAMPLES

COPYRIGHT © 1999, DAN EMORY 5

4.2 Outline-Style Autonumbering

Table 2 below shows the autonumbering series (series O) for creating out-
line-style autonumbering. Five levels are shown.

a. The paragraph formats for the Level2 thru Level5 tags have their First and Left
indents set up to produce the desired amount of indentation for each level.

b. O is the series label.

4.3 A Short Centered Line

A short centered line can be created with the following autonumbering
format specified for the CenteredLine paragraph tag:

\t\t

Where \t is the tab stop building block, and the tab stops are set in the
CenteredLine paragraph format as follows:

Tab Stop 1 = TFW/2 - L/2 (a left-aligned tab stop).

Tab Stop 2 = TS1 + L (this left-aligned tab stop specifies a custom leader
that uses the underline character).

Where:

TFW = the text frame width

L = the length of the line to be drawn

TS1 = the position of Tab Stop 1.

This produces the 1.375” centered line shown below:

Table 2. Autonumbering for the O series

Para Tag a

Counter

CommentsLevel
1b

Level
2

Level
3

Level
4

Level
5

Level1 O:<A+>. < =0> < =0> < =0> < =0>
Increments Level1
counter, and resets all
other counters to 0

Level2 O:< > <n+>. < =0> < =0> < =0>

Increments Level2
counter, and resets all
lower-level counters to
0

Level3 O:< > < > <a+>. < =0> < =0>

Increments Level3
counter, and resets all
lower-level counters to
0

Level4 O:< > < > < > <n+>) < =0>

Increments Level4
counter, and resets all
lower-level counters to
0

Level5 O:< > < > < > < > <a+>) Increments Level5
counter

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

COPYRIGHT © 1999, DAN EMORY 1

FM+SGML Information Design

Author: Dan Emory,
Dan Emory & Associates

Although the FM+SGML Developer’s Guide provides all the details need-
ed to produce an Element Definition Document (EDD), it offers little guid-
ance about information design methods. Nor does the Developer’s Guide
or any other Adobe-provided documentation discuss the complementary
roles that the EDD and its templates play in implementing sound informa-
tion designs. This paper is an attempt to remedy those deficiencies.
This paper (a structured document created with FM+SGML) focuses on the
case where there is no existing SGML Document Type Definition (DTD),
which provides the greatest opportunity for optimizing information design.
However, many of the same techniques can be applied when there is a
preexisting DTD. But a preexisting DTD often imposes a severe constraint
on the design optimization methods discussed here.

1 Overview

Note that the subject of this paper is Information Design, not document design..

Marcus Carr defines where
we’re going

I correspond frequently with Marcus Carr of Allette Systems (Australia),
who has broad experience with SGML and XML. In a recent email posted
on a discussion list to which we both subscribe, he wrote:

“…but what if the data also needs to be communicated to a database,
not just another person? It’s unreasonable to expect the database to
understand n+ word processors…The only solution is to provide a
common target for all applications that produce data, and build mid-
dleware to facilitate communication amongst them…”
“As a technical communicator, you surely feel you are already a cre-
ator of information, but the goal that you’re used to (making people
understand) is being supplemented with other potentially more impor-
tant imperatives. You will soon have to consider not only how to make
information clear to a user, but also how to make it clear to whatever
other applications may wish to make use of your data…”
“…I’m unashamedly biased—if it was up to me, everyone would pro-
duce SGML data and we would dynamically bolt together fragments
in response to specific queries…”

The New Paradigm creates new
requirements for information
Design.

The new paradigm described above will be implemented by object-orient-
ed database repositories which directly store parsed SGML/XML and enti-
ties. Queries directed at this database will retrieve documents, or portions
thereof, and middleware will dynamically assemble the retrieved compo-
nents for delivery in the manner prescribed by the human user or the using
application. The next five sections describe the elements of FM+SGML in-
formation design that I believe are essential to realizing the full potential
of the new paradigm. Section 7 describes Extensible Markup Language
(XML), which will be used to implement the new paradigm

UNIVERSALITY UNCLASSIFIED FM+SGML INFORMATION DESIGN

2 COPYRIGHT © 1999, DAN EMORY

2 Universality

Ideally, an enterprise would utilize a single EDD/DTD for all of its mission-critical document types: Ev-
erything from large multi-chapter manuals to standalone articles, specifications, proposals, training ma-
terials, and even memos, could be delivered either as printed documents, or as documents for on-line
viewing in a variety of formats to meet different customer and departmental requirements.

HTML has proven the advantag-
es of universality

HTML’s huge success, despite its many shortcomings, demonstrates the
overarching advantage of universality. The most salient feature of HTML is
a simple, flexible structure in which the structural components are docu-
ment object types not information types. Contrast this with the typical re-
ductionistic SGML DTD, which prescribes a rigid structure of elements
whose names describe information types rather than document objects.

The reductionistic approach to
structure and element naming
destroys universality

The reductionistic approach is doomed from the outset. Information con-
tent has many facets that cannot possibly be described in a single (usually
cryptic) element name. This approach usually leads to the following unde-
sirable results:

1. The DTD/EDD is specific to a particular document type, thus its
universality is destroyed.

2. The DTD/EDD is volatile because it is susceptible to change every
time there is a shift in technology or processes. These shifts often
create new information types, and make others obsolete, requir-
ing the addition of new elements and the deletion of others. The
resulting volatility invalidates legacy documents prepared to the
earlier version of the DTD/EDD.

3. Either the element names are so generic that they fail to supply
useful information about the content,

OR
The number of elements expands to describe each possible com-
bination of information facets, making the DTD so unwieldy, re-
ductionistic, volatile, and arcane that no one can use it.

Note: A reductionistic dimension to information design is revived in Sec-
tion 5, Extensibility of the Modular Structure.

Attributes should define infor-
mation types

The obvious way out of the reductionistic dead-end is to use attributes,
rather than element names, to describe the information content of each el-
ement. A set of generic attributes, easily adaptable and extensible for dif-
ferent organizational requirements, can provide the multiple facets needed
to adequately describe information content.

Element names should
describe document object
types

Authors who create documents with word processors and desktop publish-
ing systems share a common way of thinking about document objects
(e.g., headings, paragraphs, strings, lists, steps, notes, cautions, warnings,
graphics, equations, tables). When an author looks at an element catalog
listing all the valid elements that can be inserted at some point in a docu-
ment structure, s(he)’s not thinking about information content, s(he)’s
thinking about document objects. Authors need to know what kind of doc-
ument object will be created by each element so they can choose the ap-
propriate one.

FM+SGML INFORMATION DESIGN UNCLASSIFIED STRUCTURAL ENRICHMENT

COPYRIGHT © 1999, DAN EMORY 3

Requiring authors to choose among elements whose names describe infor-
mation types rather than document objects is like telling a traveller he must
first reach his destination before he is permitted to choose his mode of trav-
el. It’s counterintuitive and counterproductive.

The best of both possible
worlds

Using document objects for element names and attributes to describe in-
formation content provides the best of both possible worlds. Major bene-
fits of this approach include:

Benefits Derived from a Universal DTD/EDD

• Information Reusability: Since all document types utilize the same
DTD/EDD, information “packets” extracted from any document can
be reused in any other structured document, simply by copying and
pasting them.

• Reduced Training Costs

• Reduced Operating Costs

• Less Volatility: Since the set of document object types is relatively sta-
ble, DTD/EDD volatility can be greatly reduced when element names
describe document objects.

3 Structural Enrichment

A high-end DTP for unstructured documents resembles a Lego set, where the immutable set of building
blocks is a relatively small group of basic document object types. In FrameMaker, a template, consisting
of a set of catalogs, adds value by defining all of the different document object subtypes needed by au-
thors. Using these catalogs, authors can string pre-formatted document objects together in any sequence
or combination allowed by the DTP.

Fundamentally, the purpose of a DTD/EDD should be to impose order and
consistency on the document structure, without limiting the range of op-
tions needed by authors to present complex information. We need an or-
derly way to enrich the structure when required.

An example of structural en-
richment

Take for example, a list of numbered steps for a procedure:

Step 1. Some steps may require multiple levels of autonumbered substeps:

a. Substep a

1. First sub-substep.

2. A second sub-substep.

b. Substep b.

Step 2. A step may have multiple paragraphs, where only the first paragraph is
numbered, as demonstrated below:

The succeeding paragraphs are indented to the same level as the text in the
numbered paragraph so as to make clear it is part of the step.

Step 3. In some cases, a step needs to be preceded or followed by a a note, cau-
tion, or warning which is an integral part of the step:

STRUCTURAL ENRICHMENT UNCLASSIFIED FM+SGML INFORMATION DESIGN

4 COPYRIGHT © 1999, DAN EMORY

Note: This is a note that precedes (and pertains to) Step 4. The Alert con-
tainer element prescribes the note’s structure and format. This note is ac-
tually part of the Step element containing the text of Step 4.

Step 4. In other cases, a step may include a graphic, table, or other object which
is inserted below the step’s text, as demonstrated below:

Methods for achieving structur-
al enrichment

The DTD/EDD structure rules for the example shown above should allow
all of the indicated possibilities, and more. There are two methods for ac-
complishing this:

1. List all of the possible object types shown above as inclusions in the
Steps container (a numbered list), whose general rule is:

Step, Step+

This is the easiest solution, but it is also the least desirable one, be-
cause it clutters up the element catalog with those inclusions, which
is confusing to authors because the inclusions will be indicated as val-
id anywhere in the Steps container, even though they would all be
invalid everywhere except at the end of a Step paragraph.

2. Include in the structure rule for each Step element one or more op-
tional “structure enricher” container elements. Let’s call one of them
#Body , where the “#” prefix indicates that it is optional, and the other
Alert , which creates a note, caution, or warning before the text of
the Step element. The #Body element is an “attachment spine” for mis-
cellaneous document objects. The General Rule for the Step element
specifies that the #Body container can optionally be inserted at the
end of the text in any numbered Step container element, and that an
Alert container element can be optionally inserted before the text of
the step. That is, the general rule for element Step is:

Alert?, <TEXT>, #Body?

and the general rule for the #Body element might specify:
(Figure | Next_Level | Table | Equation | More_Text)*

Where:

• Figure produces a captioned or uncaptioned graphic

• Next_Level produces substeps under a numbered step,
or sub-substeps under a substep.

• Table produces a table of any selected type

• Equation produces a captioned or uncaptioned equa-
tion

• More_Text produces additional unnumbered text para-
graphs under a numbered step or substep paragraph.

By the Way...

This is a 1-row, 1-column table containing special instructions or expla-
nations pertaining to a procedural step.

FM+SGML INFORMATION DESIGN UNCLASSIFIED STRUCTURAL ENRICHMENT

COPYRIGHT © 1999, DAN EMORY 5

Unlike inclusions, the element catalog will indicate that the #Body
container is valid only when the text cursor is placed at the end of a
Step paragraph, and that the Alert container is valid only before the
text.

If the author needs one or more of the object types provided by
#Body , its insertion at the end of a Step paragraph causes the ele-
ment catalog to list all of the object types included in the #Body con-
tainer’s general rule.

This method has the added advantage of “encapsulating” all of those
added objects as part of the Step element to which they pertain. Con-
sequently, when such a Step element is moved or reused, all of its
attached objects go with it.

 Figure 1 shows the structure view of the implementation described in item
2 above, as it would be applied to the four-step example presented earlier
in this section.

Figure 1. Structural Enrichment Example

Steps

Step

#Body

Next_Level

#Body

Item

Next_Level

Item

Item

More_Text

Step

#Body

Step

#Body

Table

Step

ByTheWay

Item

Step 1

Step 2

Step 3

Step 4

Substep a

Substep b

Sub-Substep 1)

Sub-Substep 2)

Alert

ENCAPSULATION UNCLASSIFIED FM+SGML INFORMATION DESIGN

6 COPYRIGHT © 1999, DAN EMORY

4 Encapsulation

Encapsulation provides an effective way of managing, reusing, retrieving, and delivering packets of in-
formation below the document or file level. “Wrapper” elements that provide the means of encapsula-
tion should offer metadata enrichment (i.e., additional attributes) that enhance the ability to manage,
reuse, and retrieve the encapsulated information.

Moreover, encapsulation wrappers can greatly facilitate collaborative authoring, where two or more in-
dividuals work simultaneously and without conflict on different parts of the same document .

4.1 Uses of Encapsulation Wrappers

Creating Text Insets If an encapsulation wrapper is valid at the highest level, it can be used to
create text insets of the following types:

• Create libraries of repetitively used boilerplate material, such as stan-
dardized notes cautions and warnings, contract clauses, etc. By creat-
ing each such boilerplate packet in a separately named text flow
within a single FrameMaker file, an entire library of boilerplate mate-
rial can be contained within a single FrameMaker “fragment” file.

• In the same manner described above, each author in a collaborative
authoring environment can create his/her individual contributions to
a writing project in separately named text flows within a single
FrameMaker fragment file. When used in this manner, the master doc-
ument files that use the individual contributions essentially become
“skeletons”.

Any separately named text flow from a fragment file can then be added as
a text inset to any document that uses the same EDD, as follows:

1. Insert an Inset_Wrapper element whose structure rules include the
encapsulation wrapper used in the fragment files. The
Inset_Wrapper element has attributes that identify the name of the
source fragment file, the source fragment within that file and any other
needed amplifying information (e.g., the author’s name).

2. Once the Inset_Wrapper element is inserted, any selected text in-
set from a fragment file can be imported by reference as a child of
Inset_Wrapper .

After these steps are taken, all text insets in a document are automatically
updated whenever their source fragment is updated in its fragment file.

Encapsulation of information
packets within documents

Candidates for encapsulation include:

Minimum Deliverable Units
(MDUs)

An MDU would typically be a single subject (e.g., a section) within a doc-
ument. The section and all its subsections constitutes an information pack-
et suitable for independent delivery for on-line viewing or other purposes.
Delivery of MDUs stored in a database could result, for example, from the
outcome of a search for some combination of attribute values in MDU en-
capsulation wrappers. Only the encapsulated MDUs which satisfy the
search criteria are delivered. This delivery approach allows users to find
and analyze relevant information much more rapidly than if an entire doc-
ument were delivered for each database “hit”.

FM+SGML INFORMATION DESIGN UNCLASSIFIED ENCAPSULATION

COPYRIGHT © 1999, DAN EMORY 7

Minimum Reusable Units (MRUs) An MRU is a group of contiguous elements that forms a reusable informa-
tion packet. Delivery of MRUs could result, for example, from the out-
come of a database search for some combination of attribute values in
MRU encapsulation wrappers. Such queries would allow authors to rapid-
ly determine which MRUs, if any, match the requirements for for a specific
reuse.

4.2 How Encapsulation Wrappers are Implemented

Structure Rules Encapsulation wrappers are special attachment spines that are distin-
guished from “ordinary” attachment spines by their different purpose. The
structure rule for an encapsulation wrapper is nearly identical to the struc-
ture rule for the “ordinary” attachment spine that contains it. Consequent-
ly, any subset of contiguous elements attached to an “ordinary”
attachment spine can be encapsulated.
But these same encapsulation wrappers are also valid at the highest level
so that they can be used to create text insets in separate text flows of a frag-
ment file. Figure 2 shows an implementation.

Metadata Enrichment Attributes provide the way for encapsulation wrappers to provide details
about the information content, as well as information needed to properly
manage and reuse the data. Here is a representative list of the attributes
which might be included in encapsulation wrappers:

• ResourceID: An Identifier (e.g., a Universal Resource Identifier) that
uniquely identifies the resource represented by the MDU or MRU.

• ProjectID: Identifies the project under which the encapsulated data
was created.

• WorkOrder: Identifies the work order that authorized the creation of
the encapsulated data.

• Subject: The subject(s) of the encapsulated data.

• Description: More detail about the content of the resource.

• Purpose: Describes the purpose of the information.

• InfoType and InfoSubtype: These attributes Identify the information
type and sub-type.

• UsedIn: Identifies the document for which the encapsulated data was
originally created.

• Effectivity: Indicates product release numbers, model numbers, etc.
for which the encapsulated data is valid.

• ECOs: Identifies Engineering Change Orders that have impacted the
content of the encapsulated data.

• Author: Identifies the author of the encapsulated data.

• Owner: Identifies the owner (e.g., a department or project) that has
control over the content of the encapsulated data.

• SecurityClass: The security classification of the encapsulated data.

• Keywords: Lists the applicable keywords/phrases. Allows keyword
searches to be conducted on attribute values rather than text, guaran-
teeing that all hits are relevant.

• Correlations: One or more attributes identify design documents, spec-

ENCAPSULATION UNCLASSIFIED FM+SGML INFORMATION DESIGN

8 COPYRIGHT © 1999, DAN EMORY

ifications, regulations, etc. that influenced the information content.
For example, an OSHA regulation may prescribe how a caution or
warning is written. If the regulation changes, an attribute search for the
regulation number yields all cautions or warnings that might be affect-
ed by the change.

Figure 2. An Encapsulation Wrapper Implementation

DocType

Keel

Fragment File

MRU_Wrapper

Alert

Section

Body

Para

Inset_Wrapper

Para

Section

MDU_Wrapper

Section

Body

MRU_Wrapper

Para

List

Section
Para

Figure

LEGEND

“Ordinary”
Attachment
Spine

Encapsulation
Wrapper

Top-Level
Element

Title_Block

Table

Section

Section

Text Inset

The Alert element contains a
boilerplate note, caution or
warning

FM+SGML INFORMATION DESIGN UNCLASSIFIED ENCAPSULATION

COPYRIGHT © 1999, DAN EMORY 9

4.3 Low-Level Encapsulation

The information packets (hereafter called chunks) within each titled section should also be titled and
encapsulated.

An example of a multilevel
chunk structure (Level 1)

This is an example of a multilevel chunk structure. At each level but the
last, the title appears in the sidehead, and all of the document objects (text,
graphics, tables, etc.) that are part of the chunk appear in the normal text
column. Each chunk element has an optional #Body attachment spine for
attaching such document objects.

Level 2 Chunk Formatting differentiates a second-level chunk from a first-level one.

Level 3 Chunk Indenture and formatting differentiate a third-level chunk from a second-
level chunk.

Level 4 Chunk Formatting differentiates a fourth-level chunk from a third-level chunk.

Level 5 Chunk: The fifth-level chunk appears in the normal text column,
with the title paragraph runin with the text paragraph that follows.

Chunk structures provide a
simple way to title and encapsu-
late information packets below
the section level

 Figure 3 is the structure view of the 5-level structure shown above. Notice
that the Chunk_Level1 element encapsulates the entire structure. It should
also be observed that chunk structures are natural candidates to become
MRUs, in which case their metadata can be enriched by wrapping them in
an MRU_Wrapper.

Figure 3. Chunk Structure Implementation

Section

Chunk_Level1

Body

Para

Chunk_Level2

#Body

Para

Chunk_Level3

#Body

Para

Chunk_Level4

#Body

Para

Chunk_Level5

#Body

Para

Title

Title

Title

Title

Title

Para

EXTENSIBILITY OF THE MODULAR STRUCTURE UNCLASSIFIED FM+SGML INFORMATION DESIGN

10 COPYRIGHT © 1999, DAN EMORY

5 Extensibility of the Modular Structure

Having demolished the reductionistic approach to DTD/EDD design in Section 2, I now resurrect it.

The Modular Design Concepts
Presented Thus Far

The modular design presented in Sections 3 and 4 includes:

1. Three levels of “Ordinary” attachment spines, including:

a. Keel , which is the attachment spine for first-level section heads
and MDU encapsulation wrappers.

b. Body , which is the mandatory attachment spine, or “sub-keel”,
for chunk structures, miscellaneous document objects, and MRU
encapsulation wrappers under section heads.

c. #Body , which is the optional “structural enrichment” attachment
spine for attaching miscellaneous document objects and MRU
wrappers under chunk structures, items, paragraphs, and other
text container elements.

2. Encapsulation wrappers, which include:

a. Wrappers that are valid at the highest level, which are used to cre-
ate text insets in fragment file text flows.

b. Wrappers for Minimum Deliverable Units (MDUs), which can be
attached to the Keel attachment spine, or to first- and second-lev-
el section heads.

c. Wrappers for Minimum Reusable Units (MRUs), which can be at-
tached to the Body and #Body attachment spines.

3. Titled Chunks, attached to the Body attachment spine, which serve as
encapsulators of low-level structure.

 Figure 4 presents a generalized structure view showing how documents
are constructed from these modular components.

The main advantages of a mod-
ular structure are its extensibil-
ity and flexibility

Suppose, for example, the DTD/EDD defines many different document
types, and each such type requires various types of MDU/MRU-type wrap-
pers whose names describe doctype-specific information content (e.g., the
names of the major structural components of an automobile or aircraft).
This could be easily done, as follows:

1. Expand the structure rules for the Keel , Body , and #Body attachment
spine elements to include the names of the additional MDU- and
MRU-type wrappers that can be attached to them.

2. In the structure rule of the top-level element for each doctype, insert
an exclusions line that lists those MDU- and MRU-type wrappers that
are not applicable to that doctype.

The structure rules for each doctype-specific encapsulation wrapper could
define structures and elements that are unique to that doctype.

If this approach were taken, information interchange and universality
could be preserved by adding a “Generic” doctype whose top-level ele-
ment does not have any exclusions, thus all MDU- and MRU-type wrap-
pers and their children would be allowed in the “Generic” doctype.

It’s also possible to define doctypes without section heads. The structure
rule would omit the Keel element, replacing it with a Body element,
which allows titled chunks to be substituted for section heads.

FM+SGML INFORMATION DESIGN UNCLASSIFIED EXTENSIBILITY OF THE MODULAR STRUCTURE

COPYRIGHT © 1999, DAN EMORY 11

Figure 4. The Modular Document Structure

DocType

Keel

Body

Chunk_Level1

Doc Objects

Section

MDU_Wrapper

Section

LEGEND
“Ordinary”
Attachment
Spine

Encapsulation
Wrapper

Top-Level
Element

Title_Block

Section

Section

MDU_Wrapper

Para

Chunk_Level2

#Body

MRU_Wrapper

#Body

Doc Objects

Doc Objects

Doc Objects

Miscellaneous
Elements that
define Docu-

MRU_Wrapper

(Not Encapsulated)

(Not Encapsulated)

Doc Objects

#Body

Chunk_Level3

Doc Objects

#Body

Chunk Structure

Note : The EDD used to create
this paper has a modular
structure that closely
resembles the structure
shown here.

Doc Objects

ment Objects

}

Low
er-Level S

ections

Chunk_Levels 4 & 5

USING FM+SGML’S UNIQUE FEATURE SET UNCLASSIFIED FM+SGML INFORMATION DESIGN

12 COPYRIGHT © 1999, DAN EMORY

6 Using FM+SGML’s Unique Feature Set

FM+SGML’s feature set makes it well-suited for authoring structured documents, and as a print engine
for outputting them to paper or PDF.

6.1 Advantages of FM+SGML as an Authoring and Formatting Tool

The authoring tool must pro-
vide authors with a
WYSIWYG view

This statement simply affirms the basic premise underlying all high-end
DTPs, namely that authors cannot effectively design how information is
presented unless the on-screen editing view is an accurate representation
of how the information will appear when it is read by the end user.

Authoring and formatting fea-
tures of FM+SGML

• Its capability, through templates and EDD format rules, to format
structured documents is unmatched

• Its WSYWIG editing view assures that authors can effectively utilize
those formatting capabilities

• Its interactive structure view serves as a powerful editing tool, as well
as an aid to the analysis and management of structure

• Its element catalog shows authors which elements are valid at any giv-
en insertion point.

• Its built-in validation capability detects the following types of anoma-
lies:

— Invalid elements

— Missing elements that are required

— Invalid attributes

— Invalid values in attributes

— Missing values for required attributes.

FM+SGML stops at each anomaly, highlights it in the structure view,
and describes the defect

• Built-in Find/Change capability for searching on/changing, element
tagnames, attribute names, and attribute values

• FM+SGML eliminates most requirements for format-related process-
ing instructions (PIs) in SGML document instances.

Graphic Conversion Graphics in FM+SGML-created structured documents can be exported to
SGML as entities in almost any read/write rules-specified graphic format.

Text Insets FM+SGML’s text inset feature provides an innovative way to facilitate in-
formation reuse and collaborative authoring. Each structured text inset is
encapsulated by an encapsulation wrapper element in a separate text flow
within a fragment file.

FM+SGML INFORMATION DESIGN UNCLASSIFIED USING FM+SGML’S UNIQUE FEATURE SET

COPYRIGHT © 1999, DAN EMORY 13

6.2 FM+SGML’s Formatting Capabilities

Formatting nuances help readers to comprehend complex information, and to rapidly scan through doc-
uments in search of the particular information they seek. Format variations are likely to be needed for
different document types, different departmental standards within the enterprise, and different modes of
information delivery.

The printed or PDF version of a
document usually has the most
demanding formatting require-
ments

It follows, therefore, that the combination of the EDD and its companion
template(s) must be capable of satisfying the formatting requirements for
high-quality printed or PDF output.
When this goal is achieved, it is reasonable to assume that the information
design will also be adaptable to the formatting requirements for alternative
(and less demanding) information delivery modes.

6.2.1 The Formatting Role of the EDD

The EDD prescribes how document objects are formatted.

The EDD’s format rules define
the format tagnames that will be
included in the template’s cata-
logs

When element definitions are imported into a template, the import action
creates the EDD-specified tagnames in the template’s catalogs. The affect-
ed catalogs are:

• The paragraph catalog, which contains the base paragraph format tags
specified in the format rules of container elements.

• The character catalog, which contains the character format tags spec-
ified in the format rules of text range elements.

• The table catalog, which contains the table format tags specified in the
format rules for table elements.

• The cross-reference format catalog, which contains the cross-refer-
ence tags specified in the format rules for cross-reference elements.

The EDD defines Format chang-
es that are applied to the base
paragraph tags in the template

These format changes are specified in All Context, Context, Level, Prefix,
and Suffix rules of individual container elements.

6.2.2 The Formatting Role of FM+SGML Templates

An FM+SGML template is used to create new structured documents, or to
modify the formatting of an existing structured document. Many templates
may be created for the same EDD, each having format variations for differ-
ent document types and/or different information delivery modes.

1. The template specifies the
formatting details of the tags
added to its catalogs when the
EDD is imported into it

When these tags are created in the catalogs by the Import Element Defini-
tions action, they are plain-vanilla. Formatting details must now be added
by the template designer to fulfill the intended purpose of each tag.

2. The template has nearly total
control over many formatting
aspects

Among the aspects that are under near-total control of the template are:

• Page Layouts, including running headers and footers

• Character formats. In this case, the EDD format rules for text ranges
specify “Use Character format”, which creates the character tags in the
character catalog when the element definitions are imported into the
template. The template designer has control over the formatting de-
tails for each such character tag.

• System and User Variable Definitions

USING FM+SGML’S UNIQUE FEATURE SET UNCLASSIFIED FM+SGML INFORMATION DESIGN

14 COPYRIGHT © 1999, DAN EMORY

• Color Definitions

• Reference Frames on reference pages

• Conditional Text Settings

• Math Definitions.

3. The extent to which a tem-
plate can influence paragraph
formatting is determined by
how the EDD’s format rules are
written

The Three EDD design methods described below demonstrate how the
EDD’s format rules can affect the extent to which templates influence
paragraph formatting.

3.1 The “Top-Down Inheritance”
Method

When this method is employed, elements that are valid at the highest level
specify a base paragraph format (e.g., Body). Each container element de-
scendant of that top-level element inherits the Body paragraph format, plus
any antecedent format changes to it it which are not overridden by the el-
ement’s own format rules. Consequently, any template created from such
an EDD will have a single paragraph tag named Body in its paragraph cat-
alog. Obviously, the influence of such a template on paragraph formatting
is nil.

3.2 The “Use Paragraph Format”
Method

When this method is employed, all container element format changes are
in rules that specify “Use paragraph format”. This was the only method
available in FM+SGML’s predecessor, FrameBuilder. In this case, the tem-
plate has virtually total control over paragraph formatting.

3.3 The “Middle-of-the-Road”
Method

Both of the two previously described methods have serious disadvantages.
The middle-of-the-road method specifies a base paragraph format in the
format rules for most container elements having <TEXT> in their general
rule, so as to stop all antecedent format inheritance. The format rules re-
quired to modify the base paragraph format for each element context do
not, in most cases, specify “Use paragraph format”. Instead, they specify
“Use format change list” (more about the advantages of format change lists
in the next section).
Since many different container elements can specify the same base para-
graph format, the huge proliferation in paragraph tags produced by the
“Use Paragraph Format” method is avoided. Instead, a relatively small set
of base paragraph formats is defined to accommodate variations in such
formatting parameters as font family, font size, line spacing, table cell pa-
rameters, hyphenation, and Frame Above/Below for different types of con-
tainer elements. Although there may be some exceptions, the EDD’s
format change lists generally do not override these template-defined for-
matting parameters, thus the template designer has control over them,
making it possible to develop multiple templates for the same EDD in
which the same set of base paragraph formats is formatted differently for
different document types and/or different information delivery modes.

FM+SGML INFORMATION DESIGN UNCLASSIFIED USING FM+SGML’S UNIQUE FEATURE SET

COPYRIGHT © 1999, DAN EMORY 15

6.2.3 Advantages of Using Format Change Lists

When format change lists are utilized, virtually all EDD format rules for
modifying base paragraph formats specify:

Use Format Change List: Name

Where “Name” is the name of a particular format change list.

Format Change Lists are modu-
lar formatting building blocks

Format change lists should be viewed as modular formatting building
blocks that can be combined in many different ways to produce different
formatting outcomes (e.g., the formatting for a particular element context
can be specified in the element’s All Context and Context rules to be the
composite of two or more format change lists).

The Impact on EDD Design Format rules in an EDD refer to format change lists, where the formatting
details are provided. Since many format rules in many different elements
can use the same format change lists, the volume of formatting details in
the EDD can be greatly reduced, providing better management of the for-
matting problem, as well as making it easier to modify the EDD. In a mod-
ular EDD design, format change lists can facilitate reuse of structural
modules between different EDDs.

Format Change Lists can pro-
vide even greater format adapt-
ability

All of the format change lists in an EDD can be grouped together into cat-
egories at the end of the EDD. This makes it possible, for example, to easily
clone multiple versions of an EDD, all of which have identical element
names, structure rules, and format rules, plus the same set of named format
change lists. However, the formatting details in those format change lists
can vary from version-to-version so as to accommodate wide variations in
format for different document types and delivery modes.
Suppose, for example, two versions of the EDD, each having its own tem-
plate, are created, where one version is intended for producing printed
documents, and the other version is used for producing PDF documents
for on-line viewing. Each EDD is identical, except for the formatting details
in their format change lists. These variations define the formatting differ-
ences between the two delivery modes. Further variations (e.g., differences
in font family and font size) may exist in the formatting of the base para-
graph set in the two templates.
Suppose further that you create the printed version first. Now, you want to
produce the on-line version. All you have to do to accomplish the conver-
sion is import into the document the formats and element definitions from
the “on-line” template. Consequently, the same document files can be
used to produce both the printed and on-line versions, even though they
may differ widely in their formatting details.

6.2.4 Using Attributes to Provide Authors with Formatting Options

Without the use of formatting attributes, a container element’s paragraph
format is determined solely by its context within the structural hierarchy.
If formatting attributes are not provided and different formatting options
are required for the same basic element, multiple versions of that element
(each with a different name, the same structure rules, and different format
rules) must be created. This unnecessarily complicates the EDD, as well as
the authoring task.
Choice-type formatting attributes provide an excellent way to avoid ele-
ment proliferation, and can provide authors with the options they need to

USING FM+SGML’S UNIQUE FEATURE SET UNCLASSIFIED FM+SGML INFORMATION DESIGN

16 COPYRIGHT © 1999, DAN EMORY

optimize the presentation of complex information.

Formatting Attributes for a Para
element

Take, for example, the ubiquitous Para element that serves as the general-
purpose text container in many DTDs/EDDs. Here are some of the format-
ting options an author might like to have for the Para element:

1. Select the horizontal alignment of the paragraph as Left, Right, Center,
Justified, or aligned on a decimal point.

2. Select the table cell vertical alignment of the paragraph as Top, Mid-
dle, or Bottom

3. Specify the amount of indenture of the paragraph from the left margin
(e.g., Level 1, Level 2, etc.)

4. Change the font size of the entire paragraph from Regular (the default
font size) to 2 points larger (Large) or 2 points smaller (Small) than Reg-
ular, with a corresponding change in the line spacing

5. Change the font of the entire paragraph to Courier or some other spe-
cial font to represent, for instance, a computer message or a typed
command

6. Make the style of the entire paragraph bold, italics, or underlined

7. Make the paragraph span all columns, both the sidehead and normal
column, or only a single column

8. Force the paragraph to appear at the top of a column (Column Break)
or at the top of a page (Page Break).

All of these options can be readily provided by choice-type attributes, in
which the default value for each attribute produces the format specified by
the applicable base paragraph format in the template.

Formatting Attributes at the
Highest Level

Formatting attributes can also be used at the highest level to provide for-
matting options for an entire document. For example:

1. Autonumbering options for chapter and appendix titles (e.g., None,
Alpha, or Number), where, if the title is numbered or lettered, the
number or letter is prefixed to the section head numbers, if any.

2. Autonumbering options for section heads (e.g., None, Number Major
Sections Only, or Number All Sections).

3. Section head styling options needed for different document types or
delivery modes.

4. Autonumbering options for chunk structures below the section level,
allowing titled chunks to be used, for example, as additional num-
bered section levels.

5. Figure, Table, and Equation autonumbering options (e.g., Restart at
Chapter, Restart at Each Major Section, or Number From Start of
Book), where:

a. If the first option is chosen, numbering is restarted at 1 in each
chapter or appendix, and, if the chapter or appendix title is auto-
numbered, that autonumber is prefixed to the figure, table, and
equation autonumbers.

b. If the second option is chosen, numbering is restarted at 1 in each
major numbered section, and the section number is prefixed to
the figure, table, and equation autonumbers.

FM+SGML INFORMATION DESIGN UNCLASSIFIED USING FM+SGML’S UNIQUE FEATURE SET

COPYRIGHT © 1999, DAN EMORY 17

c. If the third option is chosen, there is no prefix to the figure, table,
and equation numbers, and they are numbered consecutively
from the start of the book.

Implementation in the EDD Formatting attributes for elements provide an effective way to give authors
a wide range of formatting options without a concomitant proliferation in
the number of elements in the EDD. Moreover, by using formatting at-
tributes, EDD modifications to accommodate additional formatting re-
quirements are easily implemented, either by adding new attributes, or by
adding more choices to existing attributes, thus the DTD/EDD structure
rules are unaffected.
Here is a typical format rule for a Style attribute in a Para element:

If context is: [Style = “Bold”]

Use format change list: Bold

Else, if context is: [Style = “Italics”]

Use format change list: Italics

Else, if context is: [Style = “Underline”]

Use format change list: Underline

Else if context is: [Style = “Normal”]

Use format change list: Normal

Note that many different container elements could have a Style attribute,
and all would reference the same format change lists in their identical for-
mat rules for the Style attribute.

6.3 Style Guide Enforcement

An EDD’s format rules constitute an auto-enforced style guide, freeing au-
thors from concerns about style guide compliance. If authors attempt to
override the format rules by applying unstructured character formatting
within paragraphs, or by making ad hoc changes to paragraph formats,
those overrides can be removed. This is accomplished by re-importing the
document’s Element Definitions (with Remove Format Overrides turned
on). This action restores the affected document to full compliance with the
EDD’s format rules, including removal of all ad hoc character and para-
graph formatting.

6.4 FM+SGML’s Utilities and Developer’s Tools

The following utilities and tools are are built into FM+SGML:

• Batch Conversion Utilities to convert FM+SGML documents to
SGML, or to convert SGML documents to FM+SGML

• Generate Structure Rules Tables for an unstructured document, and
then convert it to a structured document using those structure rules

• Generate and Apply Paragraph and Character Format Tags to a struc-
tured document in preparation for mapping those tags for an HTML
conversion

• Create a new EDD

• Create an EDD from an existing DTD

• Open a DTD for editing

USING FM+SGML’S UNIQUE FEATURE SET UNCLASSIFIED FM+SGML INFORMATION DESIGN

18 COPYRIGHT © 1999, DAN EMORY

• Create a DTD from an existing EDD

• Parse an Existing SGML Document Instance, and log all detected
anomalies

• Edit the SGML import/Export application file

• Create a new Read/Write Rules file for SGML import/export

• Check an Existing Read/Write Rules file, and log all syntax errors.

6.5 Customization

FM+SGML’s Customization capabilities include:

• Customizing menus

• Customizing graphic filters

• Developing API clients with the Frame Developer’s Kit (FDK)

• Developing SGML Import/Export Applications for accomplishing con-
versions between SGML/XML and FM+SGML

• Using FM+SGML 5.5.6’s ODMA interface to create bridges to ODMA-
compatible database repositories. Such bridges could allow
FM+SGML to:

— Check SGML/XML documents (or portions thereof) out of the da-
tabase, and import them into FM+SGML for editing

— Check FM+SGML documents (or portions thereof) back into the
database as SGML/XML.

— Query the database

— Navigate around in the database.

FM+SGML INFORMATION DESIGN UNCLASSIFIED XML FOR THE NEW PARADIGM

COPYRIGHT © 1999, DAN EMORY 19

7 XML for the New Paradigm

Extensible Markup Language (XML) will revolutionize the way in which information is handled and pro-
cessed. It promises to make information “smarter” by including machine-readable data about the struc-
ture and content of information objects (hereafter called “resources”). Resources can include
documents, document fragments, and external entities such as graphics and individual database
records. Resources are always identified by Universal Resource Identifiers (URIs), plus optional anchor
IDs. The extensibility of URIs allows the introduction of identifiers for almost any resource imaginable.

Note: Some of the text in this section paraphrases information that was
originally contained in “A New Dawn”, an article about XML by Glyn
Moody.

XSL Stylesheets It is a basic rule of XML that content and presentation are separate, thus
XML tags contain no hint about how the information contained therein
should be formatted/displayed. One candidate for creating stylesheets uses
an XML language called eXtensible Style Language (XSL). XSL stylesheets
format the data for display or printing, but also promise much more. For
example, different stylesheets could be applied to the same data; each
stylesheet could hide some information chunks, and display others.

Hypertext Links Another XML application, called XLink, makes hypertext links much more
robust than they are in HTML or PDF. XLink offers a number of new fea-
tures such as links that indicate (before you click the mouse) what kind of
link they are, and links that provide a pull-down menu of options. Each
link specifies the unique URI of its destination node, thus any node any-
where on the web or within a site is reachable.

Unicode Unicode eliminates the need for using entity references to represent glyphs
(i.e., characters) whose code points are outside the range of printable
ASCII characters. Instead, Unicode provides an unique codespace for each
of the world’s languages, plus many archaic languages. Each glyph in each
language has an unique code point. Glyphs that are common to more than
one language (e.g., punctuation) have a single code point that is used by
all languages.

Note: The Unicode standard defines the code point for each glyph, not the
glyph itself. Separate code points are provided for each diacritical mark,
thus characters having diacritical marks can be produced by specifying the
code point for the character glyph, followed by the the code point for the
diacritical mark glyph.

Different languages can be freely intermixed within the same document.
Unicode-compliant fonts are already available which permit the intermix-
ing of as many as 40 different languages with a single font.
For all of the reasons cited above, Unicode will provide a superior solution
to the translation of information into different languages.

New Languages Unicode also provides reserved blocks of codespace for different disci-
plines to create new language options. Musical, mathematical, and chem-
ical notation languages have already been developed. More special
languages for other disciplines will undoubtedly follow. Reserved blocks
of codespace are also available for enterprises to create special typograph-

XML FOR THE NEW PARADIGM UNCLASSIFIED FM+SGML INFORMATION DESIGN

20 COPYRIGHT © 1999, DAN EMORY

ical symbols (e.g., logos, and other enterprise-unique icons and charac-
ters). Users (human and non-human) will be able to treat information in
these new languages just like ordinary text, analyzing and manipulating it
in any way they see fit.

Resource Description Frame-
work (RDF)

The most potent new feature of XML involves the handling of metadata.
RDF is a flexible model for representing named properties and their prop-
erty values. It allows information about resources to be stored as if it were
in a structured database so that it is machine readable. An RDF instance is
defined by a named model that specifies the syntax and property set for a
given type of resource. Complex relationships can exist between resources
and properties within an RDF.

Benefits The benefits of RDF include:

• Much smarter searching

• Greatly improved transfer and pooling of data, such as amalgamation
of bibliographies from different enterprises to create global library cat-
alogs

• Greatly improved information management

• Many other novel automation functions are made possible by the ma-
chine readability of RDF.

Syntax RDF uses standard XML encoding as its interchange syntax. The RDF
wrapper element marks the boundaries in an XML document between
which the content is explicitly intended to be mappable into an RDF data
model instance that defines a property set. A Description container el-
ement child of the RDF wrapper contains the property set.
Suppose, for instance, that an RDF model named rdf were defined for this
document, and that this model specifies two properties: Title and Au-
thor , both of which are defined in a schema named “s”. The complete
XML document containing the RDF element would be as follows:
<?xml version “1.0”?>

<rdf:RDF>

xmlns:rdf=“URI 1”

xmlns:s=“URI 2”

<rdf:Description about=“URI 3”>

s:Title=“FM+SGML Information Design”

s:Author=“Dan Emory”

</Description>

</RDF>

Where:
xmlns: is followed by the name of an RDF model syntax or a prop-
erty schema
about is an attribute of the Description element that specifies the
URI (URI3) of the document being described

Title and Author are properties specified (in this example) as at-
tributes of the Description container element
URI1 is the URI containing the RDF model named rdf

FM+SGML INFORMATION DESIGN UNCLASSIFIED XML FOR THE NEW PARADIGM

COPYRIGHT © 1999, DAN EMORY 21

URI2 is the URI containing the property schema named s

Observe that the above RDF example is machine-translatable into any of
the following English sentences:

Dan Emory is the author of the resource URI 3, whose

title is “FM+SGML Information Design”.

OR

Resource URI 3, which is a document entitled

“FM+SGML Information Design”, was created by Dan
Emory.

OR

The document entitled “FM+SGML Information De-
sign”, which is identified as resource URI 3, was

created by Dan Emory.

If the top-level element for this document has (as it does) attributes named
Title and Author , those attribute values could be machine-extracted,
and inserted as the values of the corresponding properties in the RDF. Al-
ternatively, values of the Title and Author properties of the RDF could
be machine-extracted, and inserted into the corresponding attributes of the
top-level element for this document. Whichever way it’s done, this would
assure that the values of properties in the RDF always agree with the cor-
responding attribute values included in the top-level element of the re-
source being described.

From the foregoing, it’s also evident that RDFs could be produced for
MDU_Wrapper and MRU_Wrapper elements within a document. Each
such RDF would have an unique URI value in its about attribute.

The RDF syntax also accommodates more complex structures than that in
the example above to handle, for instance:

• Cases where a single property has multiple values (e.g., two or more
authors)

• Cases where there are nested description elements (e.g., the Author
property could itself be defined as a resource having a nested De-
scription element whose about attribute identifies the URI for
Dan Emory. This Description element for the Author resource de-
fines two properties: Name and Email).

Automated Creation and Deliv-
ery of Custom Documents from
a Database Repository

If all XML-based resources and their RDFs are stored in a searchable data-
base repository, well-formed XML documents, consisting of miscellaneous
document fragments (e.g., encapsulated MDUs and/or MRUs, each having
its own RDF) could be assembled on-the-fly and delivered to the request-
ing user. The user originates a database query specifying value(s) in one or
more RDF properties. Each time a database hit occurs, the URI in the
about attribute of that RDF is used to fetch the fragment. The fetched frag-
ments would then be assembled into a document, with the sequence in
which the fragments appear being determined by some criterion (e.g., hit
rating or parent document).

XML FOR THE NEW PARADIGM UNCLASSIFIED FM+SGML INFORMATION DESIGN

22 COPYRIGHT © 1999, DAN EMORY

Automatic Access Automatic access allows application programs to extract data held be-
tween pairs of tags and then manipulate that data automatically for any
purpose imaginable. For example, equations or chemical information
could be extracted from a document, modified, and then sent to a comput-
er-controlled process of some sort.
Using these automatic access capabilities, many believe that XML could
provide superior solutions for applications such as:

• Electronic Data Interchange (EDI), which attempts to define standard
ways for companies to exchange orders electronically.

• Electronic Record Keeping in Healthcare, where the ability to pool
medical information from many different sources to search for patterns
of disease or successful treatments could transform epidemiology.

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

	inframe-mag.com
	Welcome to InFrame - The FrameMaker Online Magazine!
	InFrame - A Personal Invitation from the Creators of InFrame
	InFrame Magazine - Features
	InFrame Magazine - Tips
	InFrame Magazine - Reviews
	InFrame Magazine - Case Studies
	InFrame Magazine - Adobe Speaks
	InFrame Magazine - Features - Autonumbering in FrameMaker
	InFrame Magazine - Features - Cross-Platform Shortcuts in FrameMaker 5.5
	InFrame Magazine - Features - Conditional Text Overview
	InFrame Magazine - Features - FrameScript: An Introduction to Writing Scripts - Part 1
	InFrame Magazine - Features - Creating multiple autogenerating TOC's in bookfiles
	InFrame Magazine - Features - FM + SGML Information Design
	InFrame Magazine - Features - Writing FrameMaker for Dummies
	InFrame Magazine - Case Studies - Motorola's FrameMaker Solution
	InFrame Magazine - Case Studies - Creating Training Manuals Using Conditional Text (Part I)
	autonum.fsg
	infdesin.fsg
	1 Overview
	2 Universality
	3 Structural Enrichment
	4 Encapsulation
	4.1 Uses of Encapsulation Wrappers
	4.2 How Encapsulation Wrappers are Implemented
	4.3 Low-Level Encapsulation

	5 Extensibility of the Modular Structure
	6 Using FM+SGML’s Unique Feature Set
	6.1 Advantages of FM+SGML as an Authoring and Form...
	6.2 FM+SGML’s Formatting Capabilities
	6.3 Style Guide Enforcement
	6.4 FM+SGML’s Utilities and Developer’s Tools
	6.5 Customization

	7 XML for the New Paradigm

